Title: | Circular Visualization |
---|---|
Description: | Circular layout is an efficient way for the visualization of huge amounts of information. Here this package provides an implementation of circular layout generation in R as well as an enhancement of available software. The flexibility of the package is based on the usage of low-level graphics functions such that self-defined high-level graphics can be easily implemented by users for specific purposes. Together with the seamless connection between the powerful computational and visual environment in R, it gives users more convenience and freedom to design figures for better understanding complex patterns behind multiple dimensional data. The package is described in Gu et al. 2014 <doi:10.1093/bioinformatics/btu393>. |
Authors: | Zuguang Gu [aut, cre] |
Maintainer: | Zuguang Gu <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.4.16 |
Built: | 2024-11-05 03:12:17 UTC |
Source: | https://github.com/jokergoo/circlize |
Circular visualization in R
This package aims to implement circular layout in R.
Since most of the figures are composed of points, lines and polygons, we just need to implement low-level functions for drawing points, lines and polygons.
Current there are following low-level graphic functions:
For drawing points, lines and text through the whole track (among several sectors), the following functions are available:
Draw circular heatmaps
Functions to arrange circular layout:
Theoretically, you are able to draw most kinds of circular plots by the above functions.
For specific use in genomics, we also implement functions which add graphics in genome scale.
Functions to initialize circos plot with genomic coordinates:
Functions to arrange genomic circular layout:
Functions to add basic graphics in genomic scale:
Functions with specific purpose:
Finally, function that draws Chord diagram:
Please refer to the vignettes (https://jokergoo.github.io/circlize_book/book/ ) to find out how to draw basic and advanced circular plots by this package.
# There is no example NULL
# There is no example NULL
Easy to way to get meta data in the current cell
## S3 method for class 'CELL_META' x$name
## S3 method for class 'CELL_META' x$name
x |
name of the variable should be "CELL_META" |
name |
name of the cell meta name |
The variable CELL_META
can only be used to get meta data of the "current" cell.
Basically you can simply replace e.g. get.cell.meta.data("sector.index")
to CELL_META$sector.index
.
# There is no example NULL
# There is no example NULL
Add transparency to colors
add_transparency(col, transparency = 0)
add_transparency(col, transparency = 0)
col |
A vector of colors. |
transparency |
Transparency, numeric value between 0 and 1. |
A vector of colors.
add_transparency("red", 0.5) add_transparency(1, 0.5) add_transparency("#FF000080", 0.2)
add_transparency("red", 0.5) add_transparency(1, 0.5) add_transparency("#FF000080", 0.2)
Convert adjacency list to an adjacency matrix
adjacencyList2Matrix(lt, square = FALSE)
adjacencyList2Matrix(lt, square = FALSE)
lt |
A data frame which contains adjacency list. |
square |
Should the returned matrix be a square matrix? |
set.seed(123) df = data.frame(from = sample(letters, 10, replace = TRUE), to = sample(letters, 10, replace = TRUE), value = 1:10) adjacencyList2Matrix(df) adjacencyList2Matrix(df, square = TRUE)
set.seed(123) df = data.frame(from = sample(letters, 10, replace = TRUE), to = sample(letters, 10, replace = TRUE), value = 1:10) adjacencyList2Matrix(df) adjacencyList2Matrix(df, square = TRUE)
Convert adjacency matrix to an adjacency list
adjacencyMatrix2List(mat, keep.zero = FALSE)
adjacencyMatrix2List(mat, keep.zero = FALSE)
mat |
A numeric matrix. |
keep.zero |
Whether to keep the interactions with value zero. |
set.seed(999) mat = matrix(sample(18, 18), 3, 6) rownames(mat) = paste0("S", 1:3) colnames(mat) = paste0("E", 1:6) adjacencyMatrix2List(mat)
set.seed(999) mat = matrix(sample(18, 18), 3, 6) rownames(mat) = paste0("S", 1:3) colnames(mat) = paste0("E", 1:6) adjacencyMatrix2List(mat)
Arrange links evenly on each sector
arrange_links_evenly(df, directional = 0)
arrange_links_evenly(df, directional = 0)
df |
A data frame with two columns. The values should only contain sector names. |
directional |
Whether the links are directional. |
This function only deals with single-line links.
A data frame with four columns of the sectors and the positions of the links.
sectors = letters[1:20] df = data.frame(from = sample(sectors, 40, replace = TRUE), to = sample(sectors, 40, replace = TRUE), stringsAsFactors = FALSE) df = unique(df) df = df[df$from != df$to, ] circos.initialize(sectors, xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index) }) df2 = arrange_links_evenly(df, directional = 1) for(i in seq_len(nrow(df2))) { s1 = df$from[i] s2 = df$to[i] circos.link(df2[i, "sector1"], df2[i, "pos1"], df2[i, "sector2"], df2[i, "pos2"], directional = 1) }
sectors = letters[1:20] df = data.frame(from = sample(sectors, 40, replace = TRUE), to = sample(sectors, 40, replace = TRUE), stringsAsFactors = FALSE) df = unique(df) df = df[df$from != df$to, ] circos.initialize(sectors, xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index) }) df2 = arrange_links_evenly(df, directional = 1) for(i in seq_len(nrow(df2))) { s1 = df$from[i] s2 = df$to[i] circos.link(df2[i, "sector1"], df2[i, "pos1"], df2[i, "sector2"], df2[i, "pos2"], directional = 1) }
Calculate gaps to make two Chord diagrams in the same scale
calc_gap(x1, x2, big.gap = 10, small.gap = 1)
calc_gap(x1, x2, big.gap = 10, small.gap = 1)
x1 |
The matrix or the data frame for the first Chord diagram. |
x2 |
The matrix or the data frame for the second Chord diagram. |
big.gap |
|
small.gap |
|
Both Chord diagrams should be both two-group Chord diagram.
A numeric value which can be directly set to big.gap
in the second Chord diagram.
set.seed(123) mat1 = matrix(sample(20, 25, replace = TRUE), 5) chordDiagram(mat1, directional = 1, grid.col = rep(1:5, 2), transparency = 0.5, big.gap = 10, small.gap = 1) mat2 = mat1 / 2 gap = calc_gap(mat1, mat2, big.gap = 10, small.gap = 1) chordDiagram(mat2, directional = 1, grid.col = rep(1:5, 2), transparency = 0.5, big.gap = gap, small.gap = 1)
set.seed(123) mat1 = matrix(sample(20, 25, replace = TRUE), 5) chordDiagram(mat1, directional = 1, grid.col = rep(1:5, 2), transparency = 0.5, big.gap = 10, small.gap = 1) mat2 = mat1 / 2 gap = calc_gap(mat1, mat2, big.gap = 10, small.gap = 1) chordDiagram(mat2, directional = 1, grid.col = rep(1:5, 2), transparency = 0.5, big.gap = gap, small.gap = 1)
Easy way to get meta data in the current cell
CELL_META
CELL_META
The variable CELL_META
can only be used to get meta data of the "current" cell.
Basically you can simply replace e.g. get.cell.meta.data("sector.index")
to CELL_META$sector.index
.
pdf(NULL) circos.initialize("a", xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { print(CELL_META$sector.index) print(CELL_META$xlim) }) print(names(CELL_META)) dev.off()
pdf(NULL) circos.initialize("a", xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { print(CELL_META$sector.index) print(CELL_META$xlim) }) print(names(CELL_META)) dev.off()
Plot Chord Diagram
chordDiagram( x, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, row.col = NULL, column.col = NULL, order = NULL, directional = 0, xmax = NULL, symmetric = FALSE, keep.diagonal = FALSE, direction.type = "diffHeight", diffHeight = mm_h(2), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, self.link = 2, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = mm_h(c(3, 2)), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = NULL, link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, ...)
chordDiagram( x, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, row.col = NULL, column.col = NULL, order = NULL, directional = 0, xmax = NULL, symmetric = FALSE, keep.diagonal = FALSE, direction.type = "diffHeight", diffHeight = mm_h(2), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, self.link = 2, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = mm_h(c(3, 2)), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = NULL, link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, ...)
x |
a matrix or a data frame. The function will pass all argument to |
grid.col |
pass to |
grid.border |
pass to |
transparency |
pass to |
col |
pass to |
row.col |
pass to |
column.col |
pass to |
order |
pass to |
directional |
pass to |
xmax |
maximum value on x-axes, the value should be a named vector. |
symmetric |
pass to |
keep.diagonal |
pass to |
direction.type |
pass to |
diffHeight |
pass to |
link.target.prop |
pass to |
target.prop.height |
pass to |
reduce |
pass to |
self.link |
pass to |
preAllocateTracks |
pass to |
annotationTrack |
pass to |
annotationTrackHeight |
pass to |
link.border |
pass to |
link.lwd |
pass to |
link.lty |
pass to |
link.auto |
pass to |
link.sort |
pass to |
link.decreasing |
pass to |
link.arr.length |
pass to |
link.arr.width |
pass to |
link.arr.type |
pass to |
link.arr.lty |
pass to |
link.arr.lwd |
pass to |
link.arr.col |
pass to |
link.largest.ontop |
pass to |
link.visible |
pass to |
link.rank |
This is argument is removed. |
link.zindex |
order to add links to the circle, a large value means to add it later. |
link.overlap |
pass to |
scale |
scale each sector to same width |
group |
It contains the group labels and the sector names are used as the names in the vector. |
big.gap |
Gap between the two sets of sectors. If the input is a matrix, the two sets are row sectors and column sectors. If the input is a data frame, the two sets correspond to the first column and the second column. It only works when there is no intersection between the two sets. |
small.gap |
Small gap between sectors. |
... |
pass to |
Chord diagram is a way to visualize numeric tables ( http://circos.ca/intro/tabular_visualization/ ), especially useful when the table represents information of directional relations. This function visualize tables in a circular way.
This function is flexible and contains some settings that may be a little difficult to understand. Please refer to vignette for better explanation.
A data frame which contains positions of links, columns are:
rn
sector name corresponding to rows in the adjacency matrix or the first column in the adjacency list
cn
sector name corresponding to columns in the adjacency matrix or the second column in the adjacency list
value
value for the interaction or relation
o1
order of the link on the "from" sector
o2
order of the link on the "to" sector
x1
and position of the link on the "from" sector, the interval for the link on the "from" sector is c(x1-abs(value), x1)
x2
and position of the link on the "to" sector, the interval for the link on the "from" sector is c(x2-abs(value), x2)
https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html
set.seed(999) mat = matrix(sample(18, 18), 3, 6) rownames(mat) = paste0("S", 1:3) colnames(mat) = paste0("E", 1:6) df = data.frame(from = rep(rownames(mat), times = ncol(mat)), to = rep(colnames(mat), each = nrow(mat)), value = as.vector(mat), stringsAsFactors = FALSE) chordDiagram(mat) chordDiagram(df) circos.clear()
set.seed(999) mat = matrix(sample(18, 18), 3, 6) rownames(mat) = paste0("S", 1:3) colnames(mat) = paste0("E", 1:6) df = data.frame(from = rep(rownames(mat), times = ncol(mat)), to = rep(colnames(mat), each = nrow(mat)), value = as.vector(mat), stringsAsFactors = FALSE) chordDiagram(mat) chordDiagram(df) circos.clear()
Plot Chord Diagram from a data frame
chordDiagramFromDataFrame( df, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, order = NULL, directional = 0, xmax = NULL, direction.type = "diffHeight", diffHeight = convert_height(2, "mm"), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, self.link = 2, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = convert_height(c(3, 2), "mm"), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = seq_len(nrow(df)), link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, plot = TRUE, ...)
chordDiagramFromDataFrame( df, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, order = NULL, directional = 0, xmax = NULL, direction.type = "diffHeight", diffHeight = convert_height(2, "mm"), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, self.link = 2, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = convert_height(c(3, 2), "mm"), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = seq_len(nrow(df)), link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, plot = TRUE, ...)
df |
A data frame with at least two columns. The first two columns specify the connections and the third column (optional)
contains numeric values which are mapped to the width of links as well as the colors if |
grid.col |
Grid colors which correspond to sectors. The length of the vector should be either 1 or the number of sectors.
It's preferred that |
grid.border |
border for grids. If it is |
transparency |
Transparency of link colors, 0 means no transparency and 1 means full transparency.
If transparency is already set in |
col |
Colors for links. It can be a vector which corresponds to connections in |
order |
Order of sectors. Default order is |
directional |
Whether links have directions. 1 means the direction is from the first column in |
xmax |
maximum value on x-axes, the value should be a named vector. |
direction.type |
type for representing directions. Can be one or two values in "diffHeight" and "arrows". If the value contains "diffHeight",
different heights of the links are used to represent the directions for which starting root has long height to give people feeling
that something is comming out. If the value contains "arrows", users can customize arrows with following arguments.
The value can be a vector which has same length as number of rows in |
diffHeight |
The difference of height between two 'roots' if |
link.target.prop |
If the Chord diagram is directional, for each source sector, whether to draw bars that shows the proportion of target sectors. |
target.prop.height |
The height of the bars when |
reduce |
if the ratio of the width of certain grid compared to the whole circle is less than this value, the grid is removed on the plot. Set it to value less than zero if you want to keep all tiny grid. |
self.link |
if there is a self link in one sector, 1 means the link will be degenerated as a 'mountain' and the width corresponds to the value for this connection. 2 means the width of the starting root and the ending root all have the same width that corresponds to the value for the connection. |
preAllocateTracks |
Pre-allocate empty tracks before drawing Chord diagram. It can be a single number indicating how many empty tracks needed to be created or a list containing settings for empty tracks. Please refer to vignette for details. |
annotationTrack |
Which annotation track should be plotted? By default, a track containing sector names and a track containing grid will be created. |
annotationTrackHeight |
Track height corresponding to values in |
link.border |
border for links, single scalar or a vector which has the same length as nrows of |
link.lwd |
width for link borders, single scalar or a vector which has the same length as nrows of |
link.lty |
style for link borders, single scalar or a vector which has the same length as nrows of |
link.auto |
Ignored. |
link.sort |
whether sort links on every sector based on the width of the links on it. The value can be logical. The value can also be string
"default" which automatically adjusts link orders so that links have minimal overall intersections. The value can also be a string
"asis" and it is only workable for input as a data frame so that the links have the same orders as in the original data frame.# -link.decreasing for |
link.decreasing |
for |
link.arr.length |
pass to |
link.arr.width |
pass to |
link.arr.type |
pass to |
link.arr.col |
color or the single line link which is put in the center of the belt. The format of this argument is same as |
link.arr.lwd |
line width ofthe single line link which is put in the center of the belt. The format of this argument is same as |
link.arr.lty |
line type of the single line link which is put in the center of the belt. The format of this argument is same as |
link.largest.ontop |
controls the order of adding links, whether based on the absolute value? |
link.rank |
This is argument is removed. |
link.visible |
whether plot the link. The value is logical, if it is set to |
link.zindex |
order to add links to the circle, a large value means to add it later. |
link.overlap |
if it is a directional Chord Diagram, whether the links that come or end in a same sector overlap? |
scale |
scale each sector to same width |
group |
It contains the group labels and the sector names are used as the names in the vector. |
big.gap |
Gaps between the sectors in the first column of |
small.gap |
Small gap between sectors. |
plot |
Internally used. |
... |
pass to |
The data frame can have a column named "rank" which is used to control the order of adding links to the diagram.
A data frame which contains positions of links, see explanation in chordDiagram
.
https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html
# There is no example NULL
# There is no example NULL
Plot Chord Diagram from an adjacency matrix
chordDiagramFromMatrix( mat, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, row.col = NULL, column.col = NULL, order = NULL, directional = 0, direction.type = "diffHeight", diffHeight = mm_h(2), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, xmax = NULL, self.link = 2, symmetric = FALSE, keep.diagonal = FALSE, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = mm_h(c(3, 2)), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = NULL, link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, ...)
chordDiagramFromMatrix( mat, grid.col = NULL, grid.border = NA, transparency = 0.5, col = NULL, row.col = NULL, column.col = NULL, order = NULL, directional = 0, direction.type = "diffHeight", diffHeight = mm_h(2), link.target.prop = TRUE, target.prop.height = mm_h(1), reduce = 1e-5, xmax = NULL, self.link = 2, symmetric = FALSE, keep.diagonal = FALSE, preAllocateTracks = NULL, annotationTrack = c("name", "grid", "axis"), annotationTrackHeight = mm_h(c(3, 2)), link.border = NA, link.lwd = par("lwd"), link.lty = par("lty"), link.auto = TRUE, link.sort = "default", link.decreasing = TRUE, link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4), link.arr.width = link.arr.length/2, link.arr.type = "triangle", link.arr.lty = par("lty"), link.arr.lwd = par("lwd"), link.arr.col = par("col"), link.largest.ontop = FALSE, link.visible = TRUE, link.rank = NULL, link.zindex = NULL, link.overlap = FALSE, scale = FALSE, group = NULL, big.gap = 10, small.gap = 1, ...)
mat |
A table which represents as a numeric matrix. |
grid.col |
Grid colors which correspond to matrix rows/columns (or sectors). The length of the vector should be either 1 or |
grid.border |
border for grids. If it is |
transparency |
Transparency of link colors, 0 means no transparency and 1 means full transparency.
If transparency is already set in |
col |
Colors for links. It can be a matrix which corresponds to |
row.col |
Colors for links. Links from the same row in |
column.col |
Colors for links. Links from the same column in |
order |
Order of sectors. Default order is |
directional |
Whether links have directions. 1 means the direction is from the first column in |
xmax |
maximum value on x-axes, the value should be a named vector. |
direction.type |
type for representing directions. Can be one or two values in "diffHeight" and "arrows". If the value contains "diffHeight",
different heights of the links are used to represent the directions for which starting root has long height to give people feeling
that something is comming out. If the value contains "arrows", users can customize arrows with following arguments.
Same setting as |
diffHeight |
The difference of height between two 'roots' if |
link.target.prop |
If the Chord diagram is directional, for each source sector, whether to draw bars that shows the proportion of target sectors. |
target.prop.height |
The height of the bars when |
reduce |
if the ratio of the width of certain grid compared to the whole circle is less than this value, the grid is removed on the plot. Set it to value less than zero if you want to keep all tiny grid. |
self.link |
if there is a self link in one sector, 1 means the link will be degenerated as a 'mountain' and the width corresponds to the value for this connection. 2 means the width of the starting root and the ending root all have the width that corresponds to the value for the connection. |
symmetric |
Whether the matrix is symmetric. If the value is set to |
keep.diagonal |
If the matrix is specified as symmetric, whether keep diagonal for visualization. |
preAllocateTracks |
Pre-allocate empty tracks before drawing Chord diagram. It can be a single number indicating how many empty tracks needed to be created or a list containing settings for empty tracks. Please refer to vignette for details. |
annotationTrack |
Which annotation track should be plotted? By default, a track containing sector names and a track containing grid will be created. |
annotationTrackHeight |
Track height corresponding to values in |
link.border |
border for links, single scalar or a matrix with names or a data frame with three columns |
link.lwd |
width for link borders, single scalar or a matrix with names or a data frame with three columns |
link.lty |
style for link borders, single scalar or a matrix with names or a data frame with three columns |
link.auto |
Ignored. |
link.sort |
whether sort links on every sector based on the width of the links on it. The value can be logical. The value can also be string
"default" which automatically adjusts link orders so that links have minimal overall intersections. The value can also be a string
"asis" and it is only workable for input as a data frame so that the links have the same orders as in the original data frame.# -link.decreasing for |
link.decreasing |
for |
link.arr.length |
pass to |
link.arr.width |
pass to |
link.arr.type |
pass to |
link.arr.col |
color or the single line link which is put in the center of the belt. The format of this argument is same as |
link.arr.lwd |
line width ofthe single line link which is put in the center of the belt. The format of this argument is same as |
link.arr.lty |
line type of the single line link which is put in the center of the belt. The format of this argument is same as |
link.largest.ontop |
controls the order of adding links, whether based on the absolute value? |
link.visible |
whether plot the link. The value is logical, if it is set to |
link.rank |
This is argument is removed. |
link.zindex |
order to add links to the circle, a large value means to add it later. |
link.overlap |
if it is a directional Chord Diagram, whether the links that come or end in a same sector overlap? |
scale |
scale each sector to same width |
group |
It contains the group labels and the sector names are used as the names in the vector. |
big.gap |
Gap between row sectors and column sectors. |
small.gap |
Small gap between sectors. |
... |
pass to |
Internally, the matrix is transformed to a data frame and sent to chordDiagramFromDataFrame
.
A data frame which contains positions of links, see explanation in chordDiagram
.
https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html
# There is no example NULL
# There is no example NULL
Convert to polar coordinate system
circlize( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
circlize( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
x |
Data points on x-axis. The value can also be a two-column matrix/data frame if you put x and y data points into one variable. |
y |
Data points on y-axis. |
sector.index |
Index for the sector to convert the coordinates. |
track.index |
Index for the track to convert the coordinates. |
This is the core function in the package. It transform data points from data coordinate system (in a specific cell) to the polar coordinate system.
A matrix with two columns (theta
and rou
). rou
is measured in degree.
pdf(NULL) sectors = c("a", "b") circos.initialize(sectors, xlim = c(0, 1)) circos.track(ylim = c(0, 1)) # x = 0.5, y = 0.5 in sector a and track 1 circlize(0.5, 0.5, sector.index = "a", track.index = 1) circos.clear() dev.off()
pdf(NULL) sectors = c("a", "b") circos.initialize(sectors, xlim = c(0, 1)) circos.track(ylim = c(0, 1)) # x = 0.5, y = 0.5 in sector a and track 1 circlize(0.5, 0.5, sector.index = "a", track.index = 1) circos.clear() dev.off()
Draw arrow which is paralle to the circle
circos.arrow( x1, x2, y = get.cell.meta.data("ycenter"), width = get.cell.meta.data("yrange")/2, sector.index = get.current.sector.index(), track.index = get.current.track.index(), arrow.head.length = mm_x(5), arrow.head.width = width*2, arrow.position = c("end", "start"), tail = c("normal", "point"), border = "black", col = "#FFCCCC", lty = par("lty"), ...)
circos.arrow( x1, x2, y = get.cell.meta.data("ycenter"), width = get.cell.meta.data("yrange")/2, sector.index = get.current.sector.index(), track.index = get.current.track.index(), arrow.head.length = mm_x(5), arrow.head.width = width*2, arrow.position = c("end", "start"), tail = c("normal", "point"), border = "black", col = "#FFCCCC", lty = par("lty"), ...)
x1 |
Start position of the arrow on the x-axis. |
x2 |
End position of the arrow on the x-axis. Note |
y |
Position of the arrow on the y-axis. Note this is the center of the arrow on y-axis. |
width |
Width of the arrow body. |
sector.index |
Index of the sector. |
track.index |
Index of the track. |
arrow.head.length |
Length of the arrow head. Note the value should be smaller than the length of the arrow itself (which is |
arrow.head.width |
Width of the arrow head. |
arrow.position |
Where is the arrow head on the arrow. If you want to the arrow in the reversed direction, set this value to |
tail |
The shape of the arrow tail (the opposite side of arrow head). |
border |
Border color of the arrow. |
col |
Filled color of the arrow. |
lty |
Line style of the arrow. |
... |
Pass to |
Note all position values are measured in the data coordinate (the coordinate in each cell). For the values of
width
, arrow.head.Length
, arrow.head.width
, they can be set with mm_y
/cm_y
/inches_y
in absolute units.
If you see points overflow warnings, you can set circos.par(points.overflow.warning = FALSE)
to turn it off.
Zuguang Gu <[email protected]>
https://jokergoo.github.io/circlize_book/book/graphics.html#circular-arrows
op = par(no.readonly = TRUE) par(mfrow = c(1, 2)) circos.initialize(letters[1:4], xlim = c(0, 1)) col = rand_color(4) tail = c("point", "normal", "point", "normal") circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(x1 = 0, x2 = 1, y = 0.5, width = 0.4, arrow.head.width = 0.6, arrow.head.length = cm_x(1), col = col[CELL_META$sector.numeric.index], tail = tail[CELL_META$sector.numeric.index]) }, bg.border = NA, track.height = 0.4) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 1)) tail = c("point", "normal", "point", "normal") circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(x1 = 0, x2 = 1, y = 0.5, width = 0.4, arrow.head.width = 0.6, arrow.head.length = cm_x(1), col = col[CELL_META$sector.numeric.index], tail = tail[CELL_META$sector.numeric.index], arrow.position = "start") }, bg.border = NA, track.height = 0.4) par(op) ########## cell cycle ########### cell_cycle = data.frame(phase = factor(c("G1", "S", "G2", "M"), levels = c("G1", "S", "G2", "M")), hour = c(11, 8, 4, 1)) color = c("#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3") circos.par(start.degree = 90) circos.initialize(cell_cycle$phase, xlim = cbind(rep(0, 4), cell_cycle$hour)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(CELL_META$xlim[1], CELL_META$xlim[2], arrow.head.width = CELL_META$yrange*0.8, arrow.head.length = cm_x(1), col = color[CELL_META$sector.numeric.index]) circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index, facing = "downward") }, bg.border = NA, track.height = 0.3) circos.clear()
op = par(no.readonly = TRUE) par(mfrow = c(1, 2)) circos.initialize(letters[1:4], xlim = c(0, 1)) col = rand_color(4) tail = c("point", "normal", "point", "normal") circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(x1 = 0, x2 = 1, y = 0.5, width = 0.4, arrow.head.width = 0.6, arrow.head.length = cm_x(1), col = col[CELL_META$sector.numeric.index], tail = tail[CELL_META$sector.numeric.index]) }, bg.border = NA, track.height = 0.4) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 1)) tail = c("point", "normal", "point", "normal") circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(x1 = 0, x2 = 1, y = 0.5, width = 0.4, arrow.head.width = 0.6, arrow.head.length = cm_x(1), col = col[CELL_META$sector.numeric.index], tail = tail[CELL_META$sector.numeric.index], arrow.position = "start") }, bg.border = NA, track.height = 0.4) par(op) ########## cell cycle ########### cell_cycle = data.frame(phase = factor(c("G1", "S", "G2", "M"), levels = c("G1", "S", "G2", "M")), hour = c(11, 8, 4, 1)) color = c("#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3") circos.par(start.degree = 90) circos.initialize(cell_cycle$phase, xlim = cbind(rep(0, 4), cell_cycle$hour)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.arrow(CELL_META$xlim[1], CELL_META$xlim[2], arrow.head.width = CELL_META$yrange*0.8, arrow.head.length = cm_x(1), col = color[CELL_META$sector.numeric.index]) circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index, facing = "downward") }, bg.border = NA, track.height = 0.3) circos.clear()
Draw x-axis
circos.axis( h = "top", major.at = NULL, labels = TRUE, major.tick = TRUE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), labels.font = par("font"), labels.cex = par("cex"), labels.facing = "inside", labels.direction = NULL, labels.niceFacing = TRUE, direction = c("outside", "inside"), minor.ticks = 4, major.tick.length = mm_y(1), major.tick.percentage = 0.5, lwd = par("lwd"), col = par("col"), labels.col = par("col"), labels.pos.adjust = TRUE)
circos.axis( h = "top", major.at = NULL, labels = TRUE, major.tick = TRUE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), labels.font = par("font"), labels.cex = par("cex"), labels.facing = "inside", labels.direction = NULL, labels.niceFacing = TRUE, direction = c("outside", "inside"), minor.ticks = 4, major.tick.length = mm_y(1), major.tick.percentage = 0.5, lwd = par("lwd"), col = par("col"), labels.col = par("col"), labels.pos.adjust = TRUE)
h |
Position of the x-axis, can be "top", "bottom" or a numeric value |
major.at |
If it is numeric vector, it identifies the positions of the major ticks. It can exceed |
labels |
labels of the major ticks. Also, the exceeding part would be trimmed automatically. The value can also be logical (either an atomic value or a vector) which represents which labels to show. |
major.tick |
Whether to draw major tick. If it is set to |
sector.index |
Index for the sector. |
track.index |
Index for the track. |
labels.font |
Font style for the axis labels. |
labels.cex |
Font size for the axis labels. |
labels.direction |
Deprecated, use |
labels.facing |
Facing of labels on axis, passing to |
labels.niceFacing |
Should facing of axis labels be human-easy. |
direction |
Whether the axis ticks point to the outside or inside of the circle. |
minor.ticks |
Number of minor ticks between two close major ticks. |
major.tick.length |
Length of the major ticks, measured in "current" data coordinate. |
major.tick.percentage |
Not used any more, please directly use |
lwd |
Line width for ticks. |
col |
Color for the axes. |
labels.col |
Color for the labels. |
labels.pos.adjust |
Whether to adjust the positions of the first label and the last label so that the first label align to its left and the last label align to its right if they exceed the range on axes. The value can be a vector of length two which correspond to the first label and the last label. |
It only draws axes on x-direction.
circos.yaxis
draws axes on y-direction.
https://jokergoo.github.io/circlize_book/book/graphics.html#axes
sectors = letters[1:8] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.1, bg.border = NA, panel.fun = function(x, y) { circos.text(5, 10, get.cell.meta.data("sector.index")) }) circos.trackPlotRegion(sectors, ylim = c(0, 10)) circos.axis(sector.index = "a") circos.axis(sector.index = "b", direction = "inside", labels.facing = "outside") circos.axis(sector.index = "c", h = "bottom") circos.axis(sector.index = "d", h = "bottom", direction = "inside", labels.facing = "reverse.clockwise") circos.axis(sector.index = "e", h = 5, major.at = c(1, 3, 5, 7, 9)) circos.axis(sector.index = "f", h = 5, major.at = c(1, 3, 5, 7, 9), labels = c("a", "c", "e", "g", "f"), minor.ticks = 0) circos.axis(sector.index = "g", h = 5, major.at = c(1, 3, 5, 7, 9), labels = c("a1", "c1", "e1", "g1", "f1"), major.tick = FALSE, labels.facing = "reverse.clockwise") circos.axis(sector.index = "h", h = 2, major.at = c(1, 3, 5, 7, 9), labels = c("a1", "c1", "e1", "g1", "f1"), minor.ticks = 2, major.tick.length = mm_y(5), labels.facing = "clockwise") circos.clear() if(FALSE) { ############### real-time clock ################# factors = letters[1] circos.par("gap.degree" = 0, "cell.padding" = c(0, 0, 0, 0), "start.degree" = 90) circos.initialize(sectors, xlim = c(0, 12)) circos.trackPlotRegion(sectors, ylim = c(0, 1), bg.border = NA) circos.axis(sector.index = "a", major.at = 0:12, labels = "", direction = "inside", major.tick.length = mm_y(3)) circos.text(1:12, rep(0.5, 12), 1:12, facing = "downward") while(1) { current.time = as.POSIXlt(Sys.time()) sec = ceiling(current.time$sec) min = current.time$min hour = current.time$hour # erase the clock hands draw.sector(rou1 = 0.8, border = "white", col = "white") sec.degree = 90 - sec/60 * 360 arrows(0, 0, cos(sec.degree/180*pi)*0.8, sin(sec.degree/180*pi)*0.8) min.degree = 90 - min/60 * 360 arrows(0, 0, cos(min.degree/180*pi)*0.7, sin(min.degree/180*pi)*0.7, lwd = 2) hour.degree = 90 - hour/12 * 360 - min/60 * 360/12 arrows(0, 0, cos(hour.degree/180*pi)*0.4, sin(hour.degree/180*pi)*0.4, lwd = 2) Sys.sleep(1) } circos.clear() }
sectors = letters[1:8] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.1, bg.border = NA, panel.fun = function(x, y) { circos.text(5, 10, get.cell.meta.data("sector.index")) }) circos.trackPlotRegion(sectors, ylim = c(0, 10)) circos.axis(sector.index = "a") circos.axis(sector.index = "b", direction = "inside", labels.facing = "outside") circos.axis(sector.index = "c", h = "bottom") circos.axis(sector.index = "d", h = "bottom", direction = "inside", labels.facing = "reverse.clockwise") circos.axis(sector.index = "e", h = 5, major.at = c(1, 3, 5, 7, 9)) circos.axis(sector.index = "f", h = 5, major.at = c(1, 3, 5, 7, 9), labels = c("a", "c", "e", "g", "f"), minor.ticks = 0) circos.axis(sector.index = "g", h = 5, major.at = c(1, 3, 5, 7, 9), labels = c("a1", "c1", "e1", "g1", "f1"), major.tick = FALSE, labels.facing = "reverse.clockwise") circos.axis(sector.index = "h", h = 2, major.at = c(1, 3, 5, 7, 9), labels = c("a1", "c1", "e1", "g1", "f1"), minor.ticks = 2, major.tick.length = mm_y(5), labels.facing = "clockwise") circos.clear() if(FALSE) { ############### real-time clock ################# factors = letters[1] circos.par("gap.degree" = 0, "cell.padding" = c(0, 0, 0, 0), "start.degree" = 90) circos.initialize(sectors, xlim = c(0, 12)) circos.trackPlotRegion(sectors, ylim = c(0, 1), bg.border = NA) circos.axis(sector.index = "a", major.at = 0:12, labels = "", direction = "inside", major.tick.length = mm_y(3)) circos.text(1:12, rep(0.5, 12), 1:12, facing = "downward") while(1) { current.time = as.POSIXlt(Sys.time()) sec = ceiling(current.time$sec) min = current.time$min hour = current.time$hour # erase the clock hands draw.sector(rou1 = 0.8, border = "white", col = "white") sec.degree = 90 - sec/60 * 360 arrows(0, 0, cos(sec.degree/180*pi)*0.8, sin(sec.degree/180*pi)*0.8) min.degree = 90 - min/60 * 360 arrows(0, 0, cos(min.degree/180*pi)*0.7, sin(min.degree/180*pi)*0.7, lwd = 2) hour.degree = 90 - hour/12 * 360 - min/60 * 360/12 arrows(0, 0, cos(hour.degree/180*pi)*0.4, sin(hour.degree/180*pi)*0.4, lwd = 2) Sys.sleep(1) } circos.clear() }
Draw barplots
circos.barplot(value, pos, bar_width = 0.6, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
circos.barplot(value, pos, bar_width = 0.6, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
value |
A numeric vector or a matrix. If it is a matrix, columns correspond to the height of bars. |
pos |
Positions of the bars. |
bar_width |
Width of bars. It assumes the bars locating at |
col |
Filled color of bars. |
border |
Color for the border. |
lwd |
Line width. |
lty |
Line style. |
sector.index |
Index of sector. |
track.index |
Index of track. |
If the input variable is a matrix, it draws a stacked barplot.
Please note, the x-values of barplots are normally integer indices. Just be careful when initializing the circular layout.
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = runif(10) circos.barplot(value, 1:10 - 0.5, col = 1:10) }) circos.track(ylim = c(-1, 1), panel.fun = function(x, y) { value = runif(10, min = -1, max = 1) circos.barplot(value, 1:10 - 0.5, col = ifelse(value > 0, 2, 3)) }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 4), panel.fun = function(x, y) { value = matrix(runif(10*4), ncol = 4) circos.barplot(value, 1:10 - 0.5, col = 2:5) }) circos.clear()
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = runif(10) circos.barplot(value, 1:10 - 0.5, col = 1:10) }) circos.track(ylim = c(-1, 1), panel.fun = function(x, y) { value = runif(10, min = -1, max = 1) circos.barplot(value, 1:10 - 0.5, col = ifelse(value > 0, 2, 3)) }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 4), panel.fun = function(x, y) { value = matrix(runif(10*4), ncol = 4) circos.barplot(value, 1:10 - 0.5, col = 2:5) }) circos.clear()
Draw boxplots
circos.boxplot(value, pos, outline = TRUE, box_width = 0.6, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), cex = par("cex"), pch = 1, pt.col = par("col"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
circos.boxplot(value, pos, outline = TRUE, box_width = 0.6, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), cex = par("cex"), pch = 1, pt.col = par("col"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
value |
A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by columns (each column is a box). |
pos |
Positions of the boxes. |
outline |
Whether to draw outliers. |
box_width |
Width of boxes. |
col |
Filled color of boxes. |
border |
Color for the border as well as the quantile lines. |
lwd |
Line width. |
lty |
Line style |
cex |
Point size. |
pch |
Point type. |
pt.col |
Point color. |
sector.index |
Index of sector. |
track.index |
Index of track. |
Please note, the x-values of boxplots are normally integer indices. Just be careful when initializing the circular layout.
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { for(pos in seq(0.5, 9.5, by = 1)) { value = runif(10) circos.boxplot(value, pos) } }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = replicate(runif(10), n = 10, simplify = FALSE) circos.boxplot(value, 1:10 - 0.5, col = 1:10) }) circos.clear()
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { for(pos in seq(0.5, 9.5, by = 1)) { value = runif(10) circos.boxplot(value, pos) } }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = replicate(runif(10), n = 10, simplify = FALSE) circos.boxplot(value, 1:10 - 0.5, col = 1:10) }) circos.clear()
Reset the circular layout parameters
circos.clear()
circos.clear()
Because there are several
parameters for the circular plot which can only be set before circos.initialize
. So before you draw the next
circular plot, you need to reset all these parameters.
If you meet some errors when re-drawing the circular plot, try running this function and it will solve most of the problems.
# There is no example NULL
# There is no example NULL
Draw connecting lines/ribons between two sets of points
circos.connect(x0, y0, x1, y1, sector.index = get.current.sector.index(), track.index = get.current.track.index(), type = c("normal", "segments", "bezier"), segments.ratio = c(1, 1, 1), col = par("col"), border = "black", lwd = par("lwd"), lty = par("lty"), ...)
circos.connect(x0, y0, x1, y1, sector.index = get.current.sector.index(), track.index = get.current.track.index(), type = c("normal", "segments", "bezier"), segments.ratio = c(1, 1, 1), col = par("col"), border = "black", lwd = par("lwd"), lty = par("lty"), ...)
x0 |
x coordinates for point set 1. The value can also be a two-column matrix. |
y0 |
y coordinates for point set 1. |
x1 |
x coordinates for point set 2. The value can also be a two-column matrix. |
y1 |
y coordinates for point set 2. |
sector.index |
Index for the sector. |
track.index |
Index for the track. |
type |
Which type of connections. Values can be "normal", "segments" and "bezier". |
segments.ratio |
When |
col |
Color of the segments. |
border |
Border color of the links. |
lwd |
Line width of the segments. |
lty |
Line type of the segments. |
... |
Other arguments. |
circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = runif(100) x1 = runif(100) circos.connect(x0, 0, x1, 1, type = "normal", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.75)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = runif(100) x1 = runif(100) circos.connect(x0, 0, x1, 1, type = "bezier", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.75)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = sort(runif(200)) x0 = matrix(x0, ncol = 2, byrow = TRUE) x1 = sort(runif(200)) x1 = matrix(x1, ncol = 2, byrow = TRUE) circos.connect(x0, 0, x1, 1, type = "normal", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.5)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = sort(runif(500)) x0 = matrix(x0, ncol = 2, byrow = TRUE) x0 = x0[sample(nrow(x0), nrow(x0)), ] x1 = sort(runif(500)) x1 = matrix(x1, ncol = 2, byrow = TRUE) x1 = x1[sample(nrow(x1), nrow(x1)), ] l = abs(x0[, 1] - x1[, 1]) < 0.5 circos.connect(x0[l ,], 0, x1[l, ], 1, type = "bezier", border = NA, col = rand_color(sum(l), luminosity = "bright", transparency = 0.5)) })
circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = runif(100) x1 = runif(100) circos.connect(x0, 0, x1, 1, type = "normal", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.75)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = runif(100) x1 = runif(100) circos.connect(x0, 0, x1, 1, type = "bezier", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.75)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = sort(runif(200)) x0 = matrix(x0, ncol = 2, byrow = TRUE) x1 = sort(runif(200)) x1 = matrix(x1, ncol = 2, byrow = TRUE) circos.connect(x0, 0, x1, 1, type = "normal", border = NA, col = rand_color(100, luminosity = "bright", transparency = 0.5)) }) circos.initialize(c("a"), xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.7, bg.border = NA, panel.fun = function(x, y) { circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[1], 2), col = "#CCCCCC") circos.lines(CELL_META$cell.xlim, rep(CELL_META$cell.ylim[2], 2), col = "#CCCCCC") x0 = sort(runif(500)) x0 = matrix(x0, ncol = 2, byrow = TRUE) x0 = x0[sample(nrow(x0), nrow(x0)), ] x1 = sort(runif(500)) x1 = matrix(x1, ncol = 2, byrow = TRUE) x1 = x1[sample(nrow(x1), nrow(x1)), ] l = abs(x0[, 1] - x1[, 1]) < 0.5 circos.connect(x0[l ,], 0, x1[l, ], 1, type = "bezier", border = NA, col = rand_color(sum(l), luminosity = "bright", transparency = 0.5)) })
Add circular dendrograms
circos.dendrogram( dend, facing = c("outside", "inside"), max_height = NULL, use_x_attr = FALSE, sector.index = get.current.sector.index(), track.index = get.current.track.index())
circos.dendrogram( dend, facing = c("outside", "inside"), max_height = NULL, use_x_attr = FALSE, sector.index = get.current.sector.index(), track.index = get.current.track.index())
dend |
A |
facing |
Is the dendromgrams facing inside to the circle or outside? |
max_height |
Maximum height of the dendrogram. This is important if more than one dendrograms are drawn in one track and making them comparable. The height of a dendrogram can be obtained by |
use_x_attr |
Whether use the |
sector.index |
Index of sector. |
track.index |
Index of track. |
Assuming there are n
nodes in the dendrogram, the positions for leaves on x-axis are always 0.5, 1.5, ..., n - 0.5
.
So you must be careful with xlim
when you initialize the cirular layout.
You can use the dendextend
package to render the dendrograms.
https://jokergoo.github.io/circlize_book/book/high-level-plots.html#phylogenetic-trees
load(system.file(package = "circlize", "extdata", "bird.orders.RData")) labels = hc$labels # name of birds ct = cutree(hc, 6) # cut tree into 6 pieces n = length(labels) # number of bird species dend = as.dendrogram(hc) circos.par(cell.padding = c(0, 0, 0, 0)) circos.initialize(sectors = "a", xlim = c(0, n)) # only one sector max_height = attr(dend, "height") # maximum height of the trees circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, track.height = 0.3, panel.fun = function(x, y) { for(i in seq_len(n)) { circos.text(i-0.5, 0, labels[i], adj = c(0, 0.5), facing = "clockwise", niceFacing = TRUE, col = ct[labels[i]], cex = 0.7) } }) suppressPackageStartupMessages(require(dendextend)) dend = color_branches(dend, k = 6, col = 1:6) circos.trackPlotRegion(ylim = c(0, max_height), bg.border = NA, track.height = 0.4, panel.fun = function(x, y) { circos.dendrogram(dend, max_height = max_height) }) circos.clear()
load(system.file(package = "circlize", "extdata", "bird.orders.RData")) labels = hc$labels # name of birds ct = cutree(hc, 6) # cut tree into 6 pieces n = length(labels) # number of bird species dend = as.dendrogram(hc) circos.par(cell.padding = c(0, 0, 0, 0)) circos.initialize(sectors = "a", xlim = c(0, n)) # only one sector max_height = attr(dend, "height") # maximum height of the trees circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, track.height = 0.3, panel.fun = function(x, y) { for(i in seq_len(n)) { circos.text(i-0.5, 0, labels[i], adj = c(0, 0.5), facing = "clockwise", niceFacing = TRUE, col = ct[labels[i]], cex = 0.7) } }) suppressPackageStartupMessages(require(dendextend)) dend = color_branches(dend, k = 6, col = 1:6) circos.trackPlotRegion(ylim = c(0, max_height), bg.border = NA, track.height = 0.4, panel.fun = function(x, y) { circos.dendrogram(dend, max_height = max_height) }) circos.clear()
Add genomic axes
circos.genomicAxis( h = "top", major.at = NULL, labels = NULL, major.by = NULL, tickLabelsStartFromZero = TRUE, labels.cex = 0.4*par("cex"), sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
circos.genomicAxis( h = "top", major.at = NULL, labels = NULL, major.by = NULL, tickLabelsStartFromZero = TRUE, labels.cex = 0.4*par("cex"), sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
h |
Position of the axes. "top" or "bottom". |
major.at |
Major breaks. If |
labels |
labels corresponding to |
major.by |
Increment of major ticks. It is calculated automatically if the value is not set (about every 10 degrees there is a major tick). |
tickLabelsStartFromZero |
Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells. |
labels.cex |
The font size for the axis tick labels. |
sector.index |
Index for the sector |
track.index |
Index for the track |
... |
Other arguments pass to |
It assigns proper tick labels under genomic coordinate.
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-axes
circos.initializeWithIdeogram(chromosome.index = paste0("chr", 1:4), plotType = NULL) circos.track(ylim = c(0, 1), panel.fun = function(x, y) circos.genomicAxis()) circos.track(ylim = c(0, 1), track.height = 0.1) circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) { circos.genomicAxis(h = "bottom", direction = "inside") }) circos.clear()
circos.initializeWithIdeogram(chromosome.index = paste0("chr", 1:4), plotType = NULL) circos.track(ylim = c(0, 1), panel.fun = function(x, y) circos.genomicAxis()) circos.track(ylim = c(0, 1), track.height = 0.1) circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) { circos.genomicAxis(h = "bottom", direction = "inside") }) circos.clear()
Calculate and add genomic density track
circos.genomicDensity( data, ylim.force = FALSE, window.size = NULL, overlap = TRUE, count_by = c("percent", "number"), col = ifelse(area, "grey", "black"), lwd = par("lwd"), lty = par("lty"), type = "l", area = TRUE, area.baseline = NULL, baseline = 0, border = NA, ...)
circos.genomicDensity( data, ylim.force = FALSE, window.size = NULL, overlap = TRUE, count_by = c("percent", "number"), col = ifelse(area, "grey", "black"), lwd = par("lwd"), lty = par("lty"), type = "l", area = TRUE, area.baseline = NULL, baseline = 0, border = NA, ...)
data |
A bed-file-like data frame or a list of data frames. If the input is a list of data frames. there will be multiple density plot in one same track. |
ylim.force |
Whether to force upper bound of |
window.size |
Pass to |
overlap |
Pass to |
count_by |
Pass to |
col |
Colors. It should be length of one. If |
lwd |
Width of lines, the same setting as |
lty |
Style of lines, the same setting as |
type |
Type of lines, see |
area |
See |
area.baseline |
Deprecated, use |
baseline |
See |
border |
See |
... |
Pass to |
This function is a high-level graphical function, and it will create a new track.
If you have multiple sets of genomic regions, you should make sure the density ranges
for all sets are similar, or I suggest you should put them into different tracks. One example
can be found in the "Examples" Section where the density range for bed_list[[2]]
is too high
compared to the range for bed_list[[1]]
, thus, it is better to put the two sets of
regions into two separate tracks.
load(system.file(package = "circlize", "extdata", "DMR.RData")) # rainfall circos.initializeWithIdeogram(plotType = c("axis", "labels")) bed_list = list(DMR_hyper, DMR_hypo) circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80")) circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1) circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1) circos.clear() ############ draw the two densities in one track ############# circos.initializeWithIdeogram(plotType = c("axis", "labels")) circos.genomicDensity(bed_list, col = c("#FF000080", "#0000FF80"), track.height = 0.2) circos.clear()
load(system.file(package = "circlize", "extdata", "DMR.RData")) # rainfall circos.initializeWithIdeogram(plotType = c("axis", "labels")) bed_list = list(DMR_hyper, DMR_hypo) circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80")) circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1) circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1) circos.clear() ############ draw the two densities in one track ############# circos.initializeWithIdeogram(plotType = c("axis", "labels")) circos.genomicDensity(bed_list, col = c("#FF000080", "#0000FF80"), track.height = 0.2) circos.clear()
Add heatmaps for selected regions
circos.genomicHeatmap( bed, col, na_col = "grey", numeric.column = NULL, border = NA, border_lwd = par("lwd"), border_lty = par("lty"), connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), heatmap_height = 0.15, side = c("inside", "outside"), track.margin = circos.par("track.margin"))
circos.genomicHeatmap( bed, col, na_col = "grey", numeric.column = NULL, border = NA, border_lwd = par("lwd"), border_lty = par("lty"), connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), heatmap_height = 0.15, side = c("inside", "outside"), track.margin = circos.par("track.margin"))
bed |
A data frame in bed format, the matrix should be stored from the fourth column. |
col |
Colors for the heatmaps. The value can be a matrix or a color mapping function generated by |
na_col |
Color for NA values. |
numeric.column |
Column index for the numeric columns. The values can be integer index or character index. By default it takes all numeric columns from the fourth column. |
border |
Border of the heatmap grids. |
border_lwd |
Line width for borders of heatmap grids. |
border_lty |
Line style for borders of heatmap grids. |
connection_height |
Height of the connection lines. If it is set to |
line_col |
Color of the connection lines. The value can be a vector. |
line_lwd |
Line width of the connection lines. |
line_lty |
Line style of the connection lines. |
heatmap_height |
Height of the heatmap track |
side |
Side of the heatmaps. Is the heatmap facing inside or outside? |
track.margin |
Bottom and top margins. |
The function visualizes heatmaps which correspond to a subset of regions in the genome. The correspondance between heatmaps and regions are identified by connection lines.
The function actually creates two tracks, one track for the connection lines and one track for the heamtaps. The heatmaps always fill the whole track.
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-heatmap
circos.initializeWithIdeogram(plotType = c("labels", "axis")) bed = generateRandomBed(nr = 100, nc = 4) col_fun = colorRamp2(c(-1, 0, 1), c("green", "black", "red")) circos.genomicHeatmap(bed, col_fun, side = "inside", border = "white") circos.genomicHeatmap(bed, col_fun, side = "outside", line_col = as.numeric(factor(bed[[1]])))
circos.initializeWithIdeogram(plotType = c("labels", "axis")) bed = generateRandomBed(nr = 100, nc = 4) col_fun = colorRamp2(c(-1, 0, 1), c("green", "black", "red")) circos.genomicHeatmap(bed, col_fun, side = "inside", border = "white") circos.genomicHeatmap(bed, col_fun, side = "outside", line_col = as.numeric(factor(bed[[1]])))
Add an ideogram track
circos.genomicIdeogram( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, track.height = mm_h(2), track.margin = circos.par("track.margin"))
circos.genomicIdeogram( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, track.height = mm_h(2), track.margin = circos.par("track.margin"))
cytoband |
A data frame or a file path, pass to |
species |
Abbreviations of the genome, pass to |
track.height |
Height of the ideogram track. |
track.margin |
Margins for the track. |
Zuguang Gu <[email protected]>
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#ideograms
circos.initializeWithIdeogram(plotType = c("labels", "axis")) circos.track(ylim = c(0, 1)) circos.genomicIdeogram() # put ideogram as the third track
circos.initializeWithIdeogram(plotType = c("labels", "axis")) circos.track(ylim = c(0, 1)) circos.genomicIdeogram() # put ideogram as the third track
Initialize circular plot with any genomic data
circos.genomicInitialize( data, sector.names = NULL, major.by = NULL, plotType = c("axis", "labels"), tickLabelsStartFromZero = TRUE, axis.labels.cex = 0.4*par("cex"), labels.cex = 0.8*par("cex"), track.height = NULL, ...)
circos.genomicInitialize( data, sector.names = NULL, major.by = NULL, plotType = c("axis", "labels"), tickLabelsStartFromZero = TRUE, axis.labels.cex = 0.4*par("cex"), labels.cex = 0.8*par("cex"), track.height = NULL, ...)
data |
A data frame in bed format. |
sector.names |
Labels for each sectors which will be drawn along each sector. It will not modify values of sector index. |
major.by |
Increment of major ticks. It is calculated automatically if the value is not set (about every 10 degrees there is a major tick). |
plotType |
If it is not |
tickLabelsStartFromZero |
Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells. |
axis.labels.cex |
The font size for the axis tick labels. |
labels.cex |
The font size for the labels. |
track.height |
If |
... |
Pass to |
The function will initialize circular plot from genomic data. If plotType
is set with value in axis
or labels
, there will
create a new track.
The order of sectors related to data structure of data
. If the first column in data
is a factor, the order of sectors
is levels(data[[1]])
; If the first column is just a simple vector, the order of sectors is unique(data[[1]]
.
For more details on initializing genomic plot, please refer to the vignettes.
df = read.cytoband()$df circos.genomicInitialize(df) df = data.frame(name = c("TP53", "TP63", "TP73"), start = c(7565097, 189349205, 3569084), end = c(7590856, 189615068, 3652765), stringsAsFactors = FALSE) circos.genomicInitialize(df) circos.clear() circos.genomicInitialize(df, tickLabelsStartFromZero = FALSE) circos.clear() circos.genomicInitialize(df, major.by = 5000) circos.clear() circos.genomicInitialize(df, plotType = "labels") circos.clear() circos.genomicInitialize(df, sector.names = c("tp53", "tp63", "tp73")) circos.clear() circos.genomicInitialize(df, sector.names = c("tp53x", "tp63x", "tp73")) circos.clear() df[[1]] = factor(df[[1]], levels = c("TP73", "TP63", "TP53")) circos.genomicInitialize(df) circos.clear()
df = read.cytoband()$df circos.genomicInitialize(df) df = data.frame(name = c("TP53", "TP63", "TP73"), start = c(7565097, 189349205, 3569084), end = c(7590856, 189615068, 3652765), stringsAsFactors = FALSE) circos.genomicInitialize(df) circos.clear() circos.genomicInitialize(df, tickLabelsStartFromZero = FALSE) circos.clear() circos.genomicInitialize(df, major.by = 5000) circos.clear() circos.genomicInitialize(df, plotType = "labels") circos.clear() circos.genomicInitialize(df, sector.names = c("tp53", "tp63", "tp73")) circos.clear() circos.genomicInitialize(df, sector.names = c("tp53x", "tp63x", "tp73")) circos.clear() df[[1]] = factor(df[[1]], levels = c("TP73", "TP63", "TP53")) circos.genomicInitialize(df) circos.clear()
Add labels to specified genomic regions
circos.genomicLabels( bed, labels = NULL, labels.column = NULL, facing = "clockwise", niceFacing = TRUE, col = par("col"), cex = 0.8, font = par("font"), padding = 0.4, connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), labels_height = min(c(cm_h(1.5), max(strwidth(labels, cex = cex, font = font)))), side = c("inside", "outside"), labels.side = side, track.margin = circos.par("track.margin"))
circos.genomicLabels( bed, labels = NULL, labels.column = NULL, facing = "clockwise", niceFacing = TRUE, col = par("col"), cex = 0.8, font = par("font"), padding = 0.4, connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), labels_height = min(c(cm_h(1.5), max(strwidth(labels, cex = cex, font = font)))), side = c("inside", "outside"), labels.side = side, track.margin = circos.par("track.margin"))
bed |
A data frame in bed format. |
labels |
A vector of labels corresponding to rows in |
labels.column |
If the label column is already in |
facing |
fFacing of the labels. The value can only be |
niceFacing |
Whether automatically adjust the facing of the labels. |
col |
Color for the labels. |
cex |
Size of the labels. |
font |
Font of the labels. |
padding |
Padding of the labels, the value is the ratio to the height of the label. |
connection_height |
Height of the connection track. |
line_col |
Color for the connection lines. |
line_lwd |
Line width for the connection lines. |
line_lty |
Line type for the connectioin lines. |
labels_height |
Height of the labels track. |
side |
Side of the labels track, is it in the inside of the track where the regions are marked? |
labels.side |
Same as |
track.margin |
Bottom and top margins. |
The function adds labels for the specified regions. The positions of labels are arranged so that they are not overlapping to each other.
This function creates two tracks, one for the connection lines and one for the labels.
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#labels
circos.initializeWithIdeogram() bed = generateRandomBed(nr = 50, fun = function(k) sample(letters, k, replace = TRUE)) bed[1, 4] = "aaaaa" circos.genomicLabels(bed, labels.column = 4, side = "inside") circos.clear() circos.initializeWithIdeogram(plotType = NULL) circos.genomicLabels(bed, labels.column = 4, side = "outside", col = as.numeric(factor(bed[[1]])), line_col = as.numeric(factor(bed[[1]]))) circos.genomicIdeogram() circos.clear()
circos.initializeWithIdeogram() bed = generateRandomBed(nr = 50, fun = function(k) sample(letters, k, replace = TRUE)) bed[1, 4] = "aaaaa" circos.genomicLabels(bed, labels.column = 4, side = "inside") circos.clear() circos.initializeWithIdeogram(plotType = NULL) circos.genomicLabels(bed, labels.column = 4, side = "outside", col = as.numeric(factor(bed[[1]])), line_col = as.numeric(factor(bed[[1]]))) circos.genomicIdeogram() circos.clear()
Add lines to a plotting region, specifically for genomic graphics
circos.genomicLines( region, value, numeric.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, col = ifelse(area, "grey", "black"), lwd = par("lwd"), lty = par("lty"), type = "l", area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"), ...)
circos.genomicLines( region, value, numeric.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, col = ifelse(area, "grey", "black"), lwd = par("lwd"), lty = par("lty"), type = "l", area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"), ...)
region |
A data frame contains 2 column which correspond to start positions and end positions. |
value |
A data frame contains values and other information. |
numeric.column |
Which column in |
sector.index |
Index of sector. |
track.index |
Index of track. |
posTransform |
Self-defined function to transform genomic positions, see |
col |
col of lines/areas. If there are more than one numeric column, the length of |
lwd |
Settings are similar as |
lty |
Settings are similar as |
type |
There is an additional option |
area |
Settings are similar as |
area.baseline |
Deprecated, use |
baseline |
Settings are similar as |
border |
Settings are similar as |
pt.col |
Settings are similar as |
cex |
Settings are similar as |
pch |
Settings are similar as |
... |
Mysterious parameters. |
The function is a low-level graphical function and usually is put in panel.fun
when using circos.genomicTrack
.
The function behaviours differently from different formats of input, see the examples in the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
### test bed circos.par("track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "l", ...) }) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100, nc = 4) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, col = 1:4, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "segment", lwd = 2, ...) }) circos.clear()
### test bed circos.par("track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "l", ...) }) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100, nc = 4) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, col = 1:4, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "segment", lwd = 2, ...) }) circos.clear()
Add links from two sets of genomic positions
circos.genomicLink( region1, region2, rou = get_most_inside_radius(), rou1 = rou, rou2 = rou, col = "black", lwd = par("lwd"), lty = par("lty"), border = col, ...)
circos.genomicLink( region1, region2, rou = get_most_inside_radius(), rou1 = rou, rou2 = rou, col = "black", lwd = par("lwd"), lty = par("lty"), border = col, ...)
region1 |
A data frame in bed format. |
region2 |
A data frame in bed format. |
rou |
Pass to |
rou1 |
Pass to |
rou2 |
Pass to |
col |
Pass to |
lwd |
Pass to |
lty |
Pass to |
border |
Pass to |
... |
Pass to |
Of course, number of rows should be same in region1
and region2
.
If you want to have more controls on links, please use circos.link
directly.
https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html#genomic-links
set.seed(123) bed1 = generateRandomBed(nr = 100) bed1 = bed1[sample(nrow(bed1), 20), ] bed2 = generateRandomBed(nr = 100) bed2 = bed2[sample(nrow(bed2), 20), ] circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram() circos.genomicLink(bed1, bed2, col = sample(1:5, 20, replace = TRUE), border = NA) circos.clear()
set.seed(123) bed1 = generateRandomBed(nr = 100) bed1 = bed1[sample(nrow(bed1), 20), ] bed2 = generateRandomBed(nr = 100) bed2 = bed2[sample(nrow(bed2), 20), ] circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram() circos.genomicLink(bed1, bed2, col = sample(1:5, 20, replace = TRUE), border = NA) circos.clear()
Add points to a plotting region, specifically for genomic graphics
circos.genomicPoints( region, value, numeric.column = NULL, sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), posTransform = NULL, pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"), ...)
circos.genomicPoints( region, value, numeric.column = NULL, sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), posTransform = NULL, pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"), ...)
region |
A data frame contains 2 columns which correspond to start positions and end positions. |
value |
A data frame contains values and other information. |
numeric.column |
Which column in |
sector.index |
Index of sector. |
track.index |
Index of track. |
posTransform |
Self-defined function to transform genomic positions, see |
col |
Color of points. If there is only one numeric column, the length of |
pch |
Type of points. Settings are similar as |
cex |
Size of points. Settings are similar as |
bg |
Background colors for points. |
... |
Mysterious parameters. |
The function is a low-level graphical function and usually is put in panel.fun
when using circos.genomicTrack
.
The function behaviours differently from different formats of input, see the examples in the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
circos.par("track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) i = getI(...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) # data frame list circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) }) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) bed = generateRandomBed(nr = 100, nc = 4) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) circos.genomicPoints(region, value, cex = 0.5, pch = 16, col = 1:4, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) circos.clear()
circos.par("track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) i = getI(...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) # data frame list circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) }) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) bed = generateRandomBed(nr = 100, nc = 4) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) circos.genomicPoints(region, value, cex = 0.5, pch = 16, col = 1:4, ...) }) circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) { cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]])) i = getI(...) circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040") }) circos.clear()
Add genomic position transformation lines between tracks
circos.genomicPosTransformLines( data, track.height = 0.1, posTransform = NULL, horizontalLine = c("none", "top", "bottom", "both"), track.margin = c(0, 0), direction = c("inside", "outside"), col = "black", lwd = par("lwd"), lty = par("lty"), ...)
circos.genomicPosTransformLines( data, track.height = 0.1, posTransform = NULL, horizontalLine = c("none", "top", "bottom", "both"), track.margin = c(0, 0), direction = c("inside", "outside"), col = "black", lwd = par("lwd"), lty = par("lty"), ...)
data |
A data frame containing genomic data. |
track.height |
Height of the track. |
posTransform |
Genomic position transformation function, see |
horizontalLine |
Whether to draw horizontal lines which indicate region width . |
track.margin |
Margin of tracks. |
direction |
Type of the transformation. |
col |
Color of lines, can be length of one or nrow of |
lwd |
Width of lines. |
lty |
Style of lines. |
... |
Pass to |
There is one representative situation when such position transformation needs to be applied. For example, there are two sets of regions in a chromosome in which regions in one set regions are quite densely to each other and regions in other set are far from others. Heatmap or text is going to be drawn on the next track. If there is no position transformation, heatmap or text for those dense regions would be overlapped and hard to identify, also ugly to visualize. Thus, a way to transform original positions to new positions would help for the visualization.
# There is no example NULL
# There is no example NULL
Genomic rainfall plot
circos.genomicRainfall( data, mode = "min", ylim = NULL, col = "black", pch = par("pch"), cex = par("cex"), normalize_to_width = FALSE, ...)
circos.genomicRainfall( data, mode = "min", ylim = NULL, col = "black", pch = par("pch"), cex = par("cex"), normalize_to_width = FALSE, ...)
data |
A bed-file-like data frame or a list of data frames. |
mode |
How to calculate the distance of two neighbouring regions, pass to |
ylim |
ylim for rainfall plot track. If |
col |
Color of points. It should be length of one. If |
pch |
Style of points. |
cex |
Size of points. |
normalize_to_width |
If it is |
... |
Pass to |
This is high-level graphical function, which mean, it will create a new track.
Rainfall plot can be used to visualize distribution of regions. On the plot, y-axis corresponds to the distance to neighbour regions (log-based). So if there is a drop-down on the plot, it means there is a cluster of regions at that area.
On the plot, y-axis are log10-transformed.
load(system.file(package = "circlize", "extdata", "DMR.RData")) # rainfall circos.initializeWithIdeogram(plotType = c("axis", "labels")) bed_list = list(DMR_hyper, DMR_hypo) circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80")) circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1) circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1) circos.clear()
load(system.file(package = "circlize", "extdata", "DMR.RData")) # rainfall circos.initializeWithIdeogram(plotType = c("axis", "labels")) bed_list = list(DMR_hyper, DMR_hypo) circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80")) circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1) circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1) circos.clear()
Draw rectangle-like grid, specifically for genomic graphics
circos.genomicRect( region, value = NULL, ytop = NULL, ybottom = NULL, ytop.column = NULL, ybottom.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, col = NA, border = "black", lty = par("lty"), ...)
circos.genomicRect( region, value = NULL, ytop = NULL, ybottom = NULL, ytop.column = NULL, ybottom.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, col = NA, border = "black", lty = par("lty"), ...)
region |
A data frame contains 2 column which correspond to start positions and end positions. |
value |
A data frame contains values and other information. |
ytop |
A vector or a single value indicating top position of rectangles. |
ybottom |
A vector or a single value indicating bottom position of rectangles. |
ytop.column |
If |
ybottom.column |
If |
sector.index |
Index of sector. |
track.index |
Index of track. |
posTransform |
Self-defined function to transform genomic positions, see |
col |
The length of |
border |
Settings are similar as |
lty |
Settings are similar as |
... |
Mysterious parameters. |
The function is a low-level graphical function and usually is put in panel.fun
when using circos.genomicTrack
.
The function behaviours differently from different formats of input, see the examples in the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram(plotType = NULL) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) f = colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red")) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { circos.genomicRect(region, value, col = f(value[[1]]), border = NA, ...) i = getI(...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000") }) circos.genomicTrack(bed_list, ylim = c(0, 3), panel.fun = function(region, value, ...) { i = getI(...) circos.genomicRect(region, value, ytop = i+0.4, ybottom = i-0.4, col = f(value[[1]]), border = NA, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000") }) circos.genomicTrack(bed1, panel.fun = function(region, value, ...) { circos.genomicRect(region, value, col = "red", border = NA, ...) }) circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicRect(region, value, col = i, border = NA, ...) }) circos.clear()
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram(plotType = NULL) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) f = colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red")) circos.genomicTrack(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { circos.genomicRect(region, value, col = f(value[[1]]), border = NA, ...) i = getI(...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000") }) circos.genomicTrack(bed_list, ylim = c(0, 3), panel.fun = function(region, value, ...) { i = getI(...) circos.genomicRect(region, value, ytop = i+0.4, ybottom = i-0.4, col = f(value[[1]]), border = NA, ...) cell.xlim = get.cell.meta.data("cell.xlim") circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000") }) circos.genomicTrack(bed1, panel.fun = function(region, value, ...) { circos.genomicRect(region, value, col = "red", border = NA, ...) }) circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicRect(region, value, col = i, border = NA, ...) }) circos.clear()
Draw text in a cell, specifically for genomic graphics
circos.genomicText( region, value = NULL, y = NULL, labels = NULL, labels.column = NULL, numeric.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, direction = NULL, facing = "inside", niceFacing = FALSE, adj = par("adj"), cex = 1, col = "black", font = par("font"), padding = 0, extend = 0, align_to = "region", ...)
circos.genomicText( region, value = NULL, y = NULL, labels = NULL, labels.column = NULL, numeric.column = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index(), posTransform = NULL, direction = NULL, facing = "inside", niceFacing = FALSE, adj = par("adj"), cex = 1, col = "black", font = par("font"), padding = 0, extend = 0, align_to = "region", ...)
region |
A data frame contains 2 column which correspond to start positions and end positions. |
value |
A data frame contains values and other information. |
y |
A vector or a single value indicating position of text. |
labels |
Labels of text corresponding to each genomic positions. |
labels.column |
If labels are in |
numeric.column |
Which column in |
sector.index |
Index of sector. |
track.index |
Index of track. |
posTransform |
Self-defined function to transform genomic positions, see |
facing |
Passing to |
niceFacing |
Should the facing of text be adjusted to fit human eyes? |
direction |
Deprecated, use |
adj |
Pass to |
cex |
Pass to |
col |
Pass to |
font |
Pass to |
padding |
pass to |
extend |
pass to |
align_to |
pass to |
... |
Mysterious parameters. |
The function is a low-level graphical function and usually is put in panel.fun
when using circos.genomicTrack
.
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 20) circos.genomicTrack(bed, ylim = c(0, 1), panel.fun = function(region, value, ...) { circos.genomicText(region, value, y = 0.5, labels = "text", ...) }) bed = cbind(bed, sample(letters, nrow(bed), replace = TRUE)) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicText(region, value, labels.column = 2, ...) }) circos.clear()
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0)) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 20) circos.genomicTrack(bed, ylim = c(0, 1), panel.fun = function(region, value, ...) { circos.genomicText(region, value, y = 0.5, labels = "text", ...) }) bed = cbind(bed, sample(letters, nrow(bed), replace = TRUE)) circos.genomicTrack(bed, panel.fun = function(region, value, ...) { circos.genomicText(region, value, labels.column = 2, ...) }) circos.clear()
Create a track for genomic graphics
circos.genomicTrack(...)
circos.genomicTrack(...)
... |
Pass to |
shortcut function of circos.genomicTrackPlotRegion
.
# There is no example NULL
# There is no example NULL
Create a track for genomic graphics
circos.genomicTrackPlotRegion( data = NULL, ylim = NULL, stack = FALSE, numeric.column = NULL, jitter = 0, panel.fun = function(region, value, ...) {NULL}, ...)
circos.genomicTrackPlotRegion( data = NULL, ylim = NULL, stack = FALSE, numeric.column = NULL, jitter = 0, panel.fun = function(region, value, ...) {NULL}, ...)
data |
A bed-file-like data frame or a list of data frames |
ylim |
If it is |
stack |
whether to plot in a "stack" mode. |
numeric.column |
Columns of numeric values in |
jitter |
Numeric. Only works for adding points in |
panel.fun |
Self-defined function which will be applied on each sector. Please not it is different
from that in |
... |
Pass to |
Similar as circos.trackPlotRegion
, users can add customized graphics by panel.fun
, but the behaviour of panel.fun
will change depending on users' input data and stack
setting.
When data
is a single data frame, region
in panel.fun
is a data frame containing the second and third column in data
in 'current' genomic category (e.g. current chromosome).
value
is also a data frame containing columns in data
excluding the first three columns.
When data
is a list containing data frames, panel.fun
will be applied iteratively on each data frame, thus,
region
is extracted from the data frame which is in the current iteration. For example, if data
contains two data frames, panel.fun
will be applied with the first data frame in current chromosome and then applied with the second data frame in the same chromosome.
If stack
is set to TRUE
, ylim
will be re-defined. in stack
mode, the y-axis will be splitted into several part
with equal height and graphics will be drawn on each 'horizontal' lines (y = 1, 2, ...). In this case:
When data
is a single data frame containing one or more numeric columns, each numeric column defined in numeric.column
will be treated as a single unit.
ylim
is re-defined to c(0.5, n+0.5)
in which n
is number of numeric columns. panel.fun
will be applied iteratively on each numeric column. In each
iteration, in panel.fun
, region
is still the genomic regions in current genomic category, but value
contains current numeric column plus all non-numeric columns.
Under stack
mode, in panel.fun
, all low-level genomic graphical functions will draw on the 'horizontal line' y = i
in which i
is the index of current numeric column
and the value of i
can be obtained by getI
.
When data
is a list containing data frames, each data frame will be treated as a single unit. The situation is quite similar as described in previous paragraph.
ylim
is re-defined to c(0.5, n+0.5)
in which n
is number of data frames. panel.fun
will be applied iteratively on each data frame. In each
iteration, in panel.fun
, region
is still the genomic regions in current genomic category, and value
contains columns in current data frame excluding the first three columns.
Under stack
mode, in panel.fun
, all low-level genomic graphical functions will draw on the 'horizontal line' y = i
in which i
is the index of current data frame.
Being different from panel.fun
in circos.trackPlotRegion
, there should be an additional argument ...
in panel.fun
. This additional
argument is used to pass hidden values to low-level graphical functions. So if you are using functions like circos.genomicPoints
, you should also
add ...
as an additional argument into circos.genomicPoints
.
https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html and https://jokergoo.github.io/circlize_book/book/modes-of-input.html
# There is no example NULL
# There is no example NULL
Make circular heatmaps
circos.heatmap(mat, split = NULL, col, na.col = "grey", cell.border = NA, cell.lty = 1, cell.lwd = 1, bg.border = NA, bg.lty = par("lty"), bg.lwd = par("lwd"), ignore.white = is.na(cell.border), cluster = TRUE, clustering.method = "complete", distance.method = "euclidean", dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)), dend.side = c("none", "outside", "inside"), dend.track.height = 0.1, rownames.side = c("none", "outside", "inside"), rownames.cex = 0.5, rownames.font = par("font"), rownames.col = "black", show.sector.labels = FALSE, cell_width = rep(1, nrow(mat)), ...)
circos.heatmap(mat, split = NULL, col, na.col = "grey", cell.border = NA, cell.lty = 1, cell.lwd = 1, bg.border = NA, bg.lty = par("lty"), bg.lwd = par("lwd"), ignore.white = is.na(cell.border), cluster = TRUE, clustering.method = "complete", distance.method = "euclidean", dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)), dend.side = c("none", "outside", "inside"), dend.track.height = 0.1, rownames.side = c("none", "outside", "inside"), rownames.cex = 0.5, rownames.font = par("font"), rownames.col = "black", show.sector.labels = FALSE, cell_width = rep(1, nrow(mat)), ...)
mat |
A matrix or a vector. The vector is transformed as a one-column matrix. |
split |
A categorical variable. It splits the matrix into a list of matrices. |
col |
If the values in the matrices are continuous, the color should be a color mapping generated by |
na.col |
Color for |
cell.border |
Border color of cells. A single scalar. |
cell.lty |
Line type of cell borders. A single scalar. |
cell.lwd |
Line width of cell borders. A single scalar. |
bg.border |
Color for background border. |
bg.lty |
Line type of the background border. |
bg.lwd |
Line width of the background border. |
ignore.white |
Whether to draw the white color? |
cluster |
whether to apply clustering on rows. The value can also be a |
clustering.method |
Clustering method, pass to |
distance.method |
Distance method, pass to |
dend.callback |
A callback function that is applied to the dendrogram in every sector. |
dend.side |
Side of the dendrograms relative to the heatmap track. |
dend.track.height |
Track height of the dendrograms. |
rownames.side |
Side of the row names relative to the heatmap track. |
rownames.cex |
Cex of row names. |
rownames.font |
Font of row names. |
rownames.col |
Color of row names. |
show.sector.labels |
Whether to show sector labels. |
cell_width |
Relative widths of heatmap cells. |
... |
Pass to |
https://jokergoo.github.io/2020/05/21/make-circular-heatmaps/
set.seed(123) mat1 = rbind(cbind(matrix(rnorm(50*5, mean = 1), nr = 50), matrix(rnorm(50*5, mean = -1), nr = 50)), cbind(matrix(rnorm(50*5, mean = -1), nr = 50), matrix(rnorm(50*5, mean = 1), nr = 50)) ) rownames(mat1) = paste0("R", 1:100) colnames(mat1) = paste0("C", 1:10) mat1 = mat1[sample(100, 100), ] # randomly permute rows split = sample(letters[1:5], 100, replace = TRUE) spilt = factor(split, levels = letters[1:5]) col_fun1 = colorRamp2(c(-2, 0, 2), c("blue", "white", "red")) circos.heatmap(mat1, split = split, col = col_fun1) circos.clear()
set.seed(123) mat1 = rbind(cbind(matrix(rnorm(50*5, mean = 1), nr = 50), matrix(rnorm(50*5, mean = -1), nr = 50)), cbind(matrix(rnorm(50*5, mean = -1), nr = 50), matrix(rnorm(50*5, mean = 1), nr = 50)) ) rownames(mat1) = paste0("R", 1:100) colnames(mat1) = paste0("C", 1:10) mat1 = mat1[sample(100, 100), ] # randomly permute rows split = sample(letters[1:5], 100, replace = TRUE) spilt = factor(split, levels = letters[1:5]) col_fun1 = colorRamp2(c(-2, 0, 2), c("blue", "white", "red")) circos.heatmap(mat1, split = split, col = col_fun1) circos.clear()
Get the x-position for heatmap rows
circos.heatmap.get.x(row_ind)
circos.heatmap.get.x(row_ind)
row_ind |
A vector of row indicies. |
A three-column data frame of the sector, the x-positions on the corresponding sectors, and the original row indicies.
# There is no example NULL
# There is no example NULL
Initialize circular heatmaps
circos.heatmap.initialize(mat, split = NULL, cluster = TRUE, clustering.method = "complete", distance.method = "euclidean", dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)), cell_width = rep(1, nrow(mat)))
circos.heatmap.initialize(mat, split = NULL, cluster = TRUE, clustering.method = "complete", distance.method = "euclidean", dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)), cell_width = rep(1, nrow(mat)))
mat |
A matrix or a vector. The vector is transformed as a one-column matrix. |
split |
A categorical variable. It splits the matrix into a list of matrices. |
cluster |
whether to apply clustering on rows. The value can also be a |
clustering.method |
Clustering method, pass to |
distance.method |
Distance method, pass to |
dend.callback |
A callback function that is applied to the dendrogram in every sector. |
cell_width |
Relative widths of heatmap cells. |
https://jokergoo.github.io/2020/05/21/make-circular-heatmaps/
# There is no example NULL
# There is no example NULL
Draw a link between two matrix rows in the circular heatmap
circos.heatmap.link(row_from, row_to, ...)
circos.heatmap.link(row_from, row_to, ...)
row_from |
The row index where the link starts. The value should be length 1. If you want to draw multiple links, put the function in a |
row_to |
The row index where the link ends. |
... |
Pass to |
set.seed(123) mat = matrix(rnorm(100*10), nrow = 100) rownames(mat) = paste0("R", 1:100) col_fun = colorRamp2(c(-2, 0, 2), c("blue", "white", "red")) circos.heatmap(mat, col = col_fun, rownames.side = "outside") circos.heatmap.link(10, 60) circos.clear() split = sample(letters[1:5], 100, replace = TRUE) circos.heatmap(mat, col = col_fun, split = split, rownames.side = "outside") circos.heatmap.link(10, 60) circos.clear()
set.seed(123) mat = matrix(rnorm(100*10), nrow = 100) rownames(mat) = paste0("R", 1:100) col_fun = colorRamp2(c(-2, 0, 2), c("blue", "white", "red")) circos.heatmap(mat, col = col_fun, rownames.side = "outside") circos.heatmap.link(10, 60) circos.clear() split = sample(letters[1:5], 100, replace = TRUE) circos.heatmap(mat, col = col_fun, split = split, rownames.side = "outside") circos.heatmap.link(10, 60) circos.clear()
Get information of the circular plot
circos.info(sector.index = NULL, track.index = NULL, plot = FALSE)
circos.info(sector.index = NULL, track.index = NULL, plot = FALSE)
sector.index |
Which sectors you want to look at? It can be a vector. |
track.index |
Which tracks you want to look at? It can be a vector. |
plot |
Whether to add information on the plot. |
It tells you the basic parameters for sectors/tracks/cells. If both sector.index
and track.index
are set to NULL
, the function would print index for
all sectors and all tracks. If sector.index
and/or track.index
are set,
the function would print xlim
, ylim
, cell.xlim
, cell.ylim
,
xplot
, yplot
, cell.width
, cell.height
, track.margin
and cell.padding
for every cell in specified sectors and tracks.
Also, the function will print index of your current sector and current track.
If plot
is set to TRUE
, the function will plot the index of the sector and the track
for each cell on the figure.
https://jokergoo.github.io/circlize_book/book/circular-layout.html#circos-info-and-circos-clear
# There is no example NULL
# There is no example NULL
Initialize the circular layout
circos.initialize( sectors = NULL, x = NULL, xlim = NULL, sector.width = NULL, factors = sectors, ring = FALSE)
circos.initialize( sectors = NULL, x = NULL, xlim = NULL, sector.width = NULL, factors = sectors, ring = FALSE)
sectors |
A |
factors |
The same as |
x |
Data on x-axes, a vector |
xlim |
Ranges for values on x-axes, see "details" section for explanation of the format |
sector.width |
Width for each sector. The length of the vector should be either 1 which means
all sectors have same width or as same as the number of sectors. Values for
the vector are relative, and they will be scaled by dividing their summation.
By default, it is |
ring |
Whether the sector represented as a ring. If yes, there should only be one sector in the circle. |
The function allocates the sectors according to the values on x-axis.
The number of sectors are determined by the factors
and the order
of sectors are determined by the levels of factors. In this function,
the start and end position for each sector on the circle (measured by degree)
are calculated according to the values on x-axis or by xlim
.
If x
is set, the length of x
must be equal to the length of factors
.
Then the data range for each sector are calculated from x
by splitting factors
.
If xlim
is set, it should be a vector containing two numbers or a matrix with 2 columns.
If xlim
is a 2-element vector, it means all sector share the same xlim
.
If xlim
is a 2-column matrix, the number of rows should be equal to the number of categories
identified by factors
, then each row of xlim
corresponds to the data range for each sector
and the order of rows is corresponding to the order of levels of factors
. If xlim
is a matrix
for which row names cover all sector names, xlim
is automatically adjusted.
Normally, width of sectors will be calculated internally according to the data range in sectors. But you can still set the width manually. However, it is not always a good idea to change the default sector width since the width can reflect the range of data in sectors. However, in some cases, it is useful to manually set the width such as you want to zoom some part of the sectors.
The function finally calls plot
with enforing aspect ratio to be 1 and be ready for adding graphics.
https://jokergoo.github.io/circlize_book/book/circular-layout.html
# There is no example NULL
# There is no example NULL
Initialize a layout for circular genome
circos.initializeCircularGenome(name, genome_size, plotType = "axis", ...)
circos.initializeCircularGenome(name, genome_size, plotType = "axis", ...)
name |
Name of the genome (or the "chromosome name"). |
genome_size |
Size of the genome |
plotType |
Pass to |
... |
All goes to |
# There is no example NULL
# There is no example NULL
Initialize the circular layout with an ideogram
circos.initializeWithIdeogram( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, sort.chr = TRUE, draw.chr.prefix = FALSE, chromosome.index = usable_chromosomes(species), major.by = NULL, plotType = c("ideogram", "axis", "labels"), track.height = NULL, ideogram.height = convert_height(2, "mm"), ...)
circos.initializeWithIdeogram( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, sort.chr = TRUE, draw.chr.prefix = FALSE, chromosome.index = usable_chromosomes(species), major.by = NULL, plotType = c("ideogram", "axis", "labels"), track.height = NULL, ideogram.height = convert_height(2, "mm"), ...)
cytoband |
A path of the cytoband file or a data frame that already contains cytoband data. By default it is cytoband for hg19.
Pass to |
species |
Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this
value is specified, the function will download cytoBand.txt.gz from
UCSC website automatically. If there is no cytoband for user's species,
it will keep on trying to download chromInfo file. Pass to |
chromosome.index |
subset of chromosomes, also used to reorder chromosomes. |
sort.chr |
Whether chromosome names should be sorted (first sort by numbers then by letters).
If |
draw.chr.prefix |
Whether draw the "chr" prefix for chromosomes. |
major.by |
Increment of major ticks. Pass to |
plotType |
Which tracks should be drawn. |
track.height |
Height of the track which contains "axis" and "labels". |
ideogram.height |
Height of the ideogram track |
... |
Pass to |
The function will initialize the circular plot in which each sector corresponds to a chromosome. You can control the order of
chromosomes by chromosome.index
or by sort.chr
, or by setting a special format of cytoband
(please refer to read.cytoband
to find out how to control a proper cytoband
).
The function finally pass data to circos.genomicInitialize
to initialize the circular plot.
The style of ideogram is almost fixed, but you can customize it with your self-sefined code. Refer to vignette for demonstration.
https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-cytoband
circos.initializeWithIdeogram() cytoband.file = system.file(package = "circlize", "extdata", "cytoBand.txt") circos.initializeWithIdeogram(cytoband.file) cytoband.df = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband.df) circos.initializeWithIdeogram(species = "hg18") circos.initializeWithIdeogram(species = "mm10") circos.initializeWithIdeogram(chromosome.index = c("chr1", "chr2")) cytoband = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband, sort.chr = FALSE) cytoband[[1]] = factor(cytoband[[1]], levels = paste0("chr", c(22:1, "X", "Y"))) circos.initializeWithIdeogram(cytoband, sort.chr = FALSE) cytoband = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband, sort.chr = TRUE) circos.initializeWithIdeogram(plotType = c("axis", "labels")) circos.initializeWithIdeogram(plotType = NULL) circos.par("start.degree" = 90) circos.initializeWithIdeogram() circos.clear() circos.par("gap.degree" = rep(c(2, 4), 12)) circos.initializeWithIdeogram() circos.clear()
circos.initializeWithIdeogram() cytoband.file = system.file(package = "circlize", "extdata", "cytoBand.txt") circos.initializeWithIdeogram(cytoband.file) cytoband.df = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband.df) circos.initializeWithIdeogram(species = "hg18") circos.initializeWithIdeogram(species = "mm10") circos.initializeWithIdeogram(chromosome.index = c("chr1", "chr2")) cytoband = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband, sort.chr = FALSE) cytoband[[1]] = factor(cytoband[[1]], levels = paste0("chr", c(22:1, "X", "Y"))) circos.initializeWithIdeogram(cytoband, sort.chr = FALSE) cytoband = read.table(cytoband.file, colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") circos.initializeWithIdeogram(cytoband, sort.chr = TRUE) circos.initializeWithIdeogram(plotType = c("axis", "labels")) circos.initializeWithIdeogram(plotType = NULL) circos.par("start.degree" = 90) circos.initializeWithIdeogram() circos.clear() circos.par("gap.degree" = rep(c(2, 4), 12)) circos.initializeWithIdeogram() circos.clear()
Add a label track
circos.labels( sectors, x, labels, facing = "clockwise", niceFacing = TRUE, col = par("col"), cex = 0.8, font = par("font"), padding = 0.4, connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), labels_height = min(c(cm_h(1.5), max(strwidth(labels, cex = cex, font = font)))), side = c("inside", "outside"), labels.side = side, track.margin = circos.par("track.margin"))
circos.labels( sectors, x, labels, facing = "clockwise", niceFacing = TRUE, col = par("col"), cex = 0.8, font = par("font"), padding = 0.4, connection_height = mm_h(5), line_col = par("col"), line_lwd = par("lwd"), line_lty = par("lty"), labels_height = min(c(cm_h(1.5), max(strwidth(labels, cex = cex, font = font)))), side = c("inside", "outside"), labels.side = side, track.margin = circos.par("track.margin"))
sectors |
A vector of sector names. |
x |
Positions of the labels. |
labels |
A vector of labels. |
facing |
Facing of the labels. The value can only be |
niceFacing |
Whether automatically adjust the facing of the labels. |
col |
Color for the labels. |
cex |
Size of the labels. |
font |
Font of the labels. |
padding |
Padding of the labels, the value is the ratio to the height of the label. |
connection_height |
Height of the connection track. |
line_col |
Color for the connection lines. |
line_lwd |
Line width for the connection lines. |
line_lty |
Line type for the connectioin lines. |
labels_height |
Height of the labels track. |
side |
Side of the labels track, is it in the inside of the track where the regions are marked? |
labels.side |
Same as |
track.margin |
Bottom and top margins. |
This function creates two tracks, one for the connection lines and one for the labels.
If two labels are too close and overlap, this function automatically adjusts the positions of neighouring labels.
circos.initialize(sectors = letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) circos.labels(c("a", "a", "b", "b"), x = c(0.1, 0.12, 0.4, 0.6), labels = c(0.1, 0.12, 0.4, 0.6))
circos.initialize(sectors = letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) circos.labels(c("a", "a", "b", "b"), x = c(0.1, 0.12, 0.4, 0.6), labels = c(0.1, 0.12, 0.4, 0.6))
Add lines to the plotting region
circos.lines( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), col = ifelse(area, "grey", par("col")), lwd = par("lwd"), lty = par("lty"), type = "l", straight = FALSE, area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"))
circos.lines( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), col = ifelse(area, "grey", par("col")), lwd = par("lwd"), lty = par("lty"), type = "l", straight = FALSE, area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"))
x |
Data points on x-axis, measured in "current" data coordinate. |
y |
Data points on y-axis, measured in "current" data coordinate. |
sector.index |
Index for the sector. |
track.index |
Index for the track. |
col |
Line color. |
lwd |
Line width. |
lty |
Line style. |
type |
Line type, similar as |
straight |
Whether draw straight lines between points. |
area |
Whether to fill the area below the lines. If it is set to |
area.baseline |
deprecated, use |
baseline |
The base line to draw areas. By default it is the minimal of y-range (bottom). It can be a string or a number. If a string, it should be one of |
border |
color for border of the area. |
pt.col |
If |
cex |
If |
pch |
If |
Normally, straight lines in the Cartesian coordinate have to be transformed into curves in the circular layout.
But if you do not want to do such transformation you can use this function just drawing straight
lines between points by setting straight
to TRUE
.
Drawing areas below lines can help to identify the direction of y-axis in cells (since it is a circle). This can be done by specifying
area
to TURE
.
sectors = letters[1:9] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5) circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "a") circos.text(5, 9, "type = 'l'", sector.index = "a", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "b", type = "o") circos.text(5, 9, "type = 'o'", sector.index = "b", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "c", type = "h") circos.text(5, 9, "type = 'h'", sector.index = "c", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "d", type = "h", baseline = 5) circos.text(5, 9, "type = 'h', baseline = 5", sector.index = "d", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "e", type = "s") circos.text(5, 9, "type = 's'", sector.index = "e", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "f", area = TRUE) circos.text(5, 9, "type = 'l', area = TRUE", sector.index = "f") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "g", type = "o", area = TRUE) circos.text(5, 9, "type = 'o', area = TRUE", sector.index = "g") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "h", type = "s", area = TRUE) circos.text(5, 9, "type = 's', area = TRUE", sector.index = "h") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "i", area = TRUE, baseline = "top") circos.text(5, 9, "type = 'l', area = TRUE, baseline = 'top'", sector.index = "i") circos.clear()
sectors = letters[1:9] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5) circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "a") circos.text(5, 9, "type = 'l'", sector.index = "a", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "b", type = "o") circos.text(5, 9, "type = 'o'", sector.index = "b", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "c", type = "h") circos.text(5, 9, "type = 'h'", sector.index = "c", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "d", type = "h", baseline = 5) circos.text(5, 9, "type = 'h', baseline = 5", sector.index = "d", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "e", type = "s") circos.text(5, 9, "type = 's'", sector.index = "e", facing = "outside") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "f", area = TRUE) circos.text(5, 9, "type = 'l', area = TRUE", sector.index = "f") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "g", type = "o", area = TRUE) circos.text(5, 9, "type = 'o', area = TRUE", sector.index = "g") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "h", type = "s", area = TRUE) circos.text(5, 9, "type = 's', area = TRUE", sector.index = "h") circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "i", area = TRUE, baseline = "top") circos.text(5, 9, "type = 'l', area = TRUE, baseline = 'top'", sector.index = "i") circos.clear()
Draw links between points or/and intervals
circos.link( sector.index1, point1, sector.index2, point2, rou = get_most_inside_radius(), rou1 = rou, rou2 = rou, h = NULL, h.ratio = 0.5, w = 1, h2 = h, w2 = w, inverse = FALSE, col = "black", lwd = par("lwd"), lty = par("lty"), border = col, directional = 0, arr.length = ifelse(arr.type == "big.arrow", 0.02, 0.4), arr.width = arr.length/2, arr.type = "triangle", arr.lty = lty, arr.lwd = lwd, arr.col = col, reduce_to_mid_line = FALSE)
circos.link( sector.index1, point1, sector.index2, point2, rou = get_most_inside_radius(), rou1 = rou, rou2 = rou, h = NULL, h.ratio = 0.5, w = 1, h2 = h, w2 = w, inverse = FALSE, col = "black", lwd = par("lwd"), lty = par("lty"), border = col, directional = 0, arr.length = ifelse(arr.type == "big.arrow", 0.02, 0.4), arr.width = arr.length/2, arr.type = "triangle", arr.lty = lty, arr.lwd = lwd, arr.col = col, reduce_to_mid_line = FALSE)
sector.index1 |
Index for the first sector where one link end locates |
point1 |
A single value or a numeric vector of length 2. If it is a 2-elements vector, then the link would be a belt/ribbon. |
sector.index2 |
Index for the other sector where the other link end locates |
point2 |
A single value or a numeric vector of length 2. If it is a 2-elements vector, then the link would be a belt/ribbon. |
rou |
The position of the the link ends (if |
rou1 |
The position of end 1 of the link. |
rou2 |
The position of end 2 of the link. |
h |
Height of the link, measured as percent to the radius to the unit circle. By default it is automatically infered. |
h.ratio |
systematically change the link height. The value is between 0 and 1. |
w |
Since the link is a Bezier curve, it controls the shape of Bezier curve. |
h2 |
Height of the bottom edge of the link if it is a ribbon. |
w2 |
Shape of the bottom edge of the link if it is a ribbon. |
inverse |
Whether the link is inversed. |
col |
Color of the link. If the link is a ribbon, then it is the filled color for the ribbon. |
lwd |
Line (or border) width |
lty |
Line (or border) style |
border |
If the link is a ribbon, then it is the color for the ribbon border. |
directional |
0 for no direction, 1 for direction from |
arr.width |
Width of the arrows, pass to |
arr.type |
Type of the arrows, pass to |
arr.length |
Length of the arrows, measured in 'cm', pass to |
arr.col |
Color of the arrows, pass to |
arr.lwd |
Line width of arrows, pass to |
arr.lty |
Line type of arrows, pass to |
reduce_to_mid_line |
Only use the middle points of |
Links are implemented as quadratic Bezier curves (https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Rational_B.C3.A9zier_curves ).
Drawing links does not create any track. So you can think it is independent of the tracks.
By default you only need to set sector.index1
, point1
, sector.index2
and point2
. The
links would look nice.
Please refer to the vignette for detailed explanation.
https://jokergoo.github.io/circlize_book/book/graphics.html#links
# There is no example NULL
# There is no example NULL
Nested zooming with two circular plots
circos.nested( f1, f2, correspondance, connection_height = mm_h(5), connection_col = NA, connection_border = "black", connection_lty = par("lty"), connection_lwd = par("lwd"), adjust_start_degree = TRUE)
circos.nested( f1, f2, correspondance, connection_height = mm_h(5), connection_col = NA, connection_border = "black", connection_lty = par("lty"), connection_lwd = par("lwd"), adjust_start_degree = TRUE)
f1 |
A self-defined function for making the first circular plot. The function should have no argument. |
f2 |
A self-defined function for making the second circular plot. The function should have no argument. |
correspondance |
A six-column data frame which contains correspondance between the coordinates in two circular plots |
connection_height |
The height of the connection track, measured as the percent to the radius of the unit circle. The value can be specified by |
connection_col |
Filled color of the connection track. The value can be a vector with same length as number of rows of |
connection_border |
Border color of the connection track. |
connection_lty |
Line style of the connection track borders |
connection_lwd |
Line width of the connection track borders |
adjust_start_degree |
If |
The function visualizes zoomings by combining two circular plots into one page where one is the normal circular plot and the other one only contains regions that need to be zoomed. This function automatically arranges the two plots to make it easy to correspond between the original and the zoomed sectors.
Since the function needs to know the information of the two circular plots, please do not call
circos.clear
in either f1()
or f2()
. It will be called internally in circos.nested
.
If adjust_start_degree
is set to TRUE
, start.degree
should not be set in f2()
.
Also canvas.xlim
and canvas.ylim
are reset in f2()
, they should not be set in f2()
either.
Zuguang Gu <[email protected]>
https://jokergoo.github.io/circlize_book/book/nested-zooming.html
# There is no example NULL
# There is no example NULL
Parameters for the circular layout
circos.par(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)
circos.par(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)
... |
Arguments for the parameters, see "details" section |
RESET |
reset to default values |
READ.ONLY |
please ignore |
LOCAL |
please ignore |
ADD |
please ignore |
Global parameters for the circular layout. Currently supported parameters are:
start.degree
The starting degree from which the circle begins to draw. Note this degree is measured in the standard polar coordinate which means it is always reverse-clockwise.
gap.degree
Gap between two neighbour sectors. It can be a single value or a vector. If it is a vector, the first value corresponds to the gap after the first sector.
gap.after
identical to gap.degree
option, but a more understandable name. Modifying this option will also affect gap.degree
.
track.margin
Like margin
in Cascading Style Sheets (CSS), it is the blank area
out of the plotting region, also outside of the borders. Since left and right margin are controlled
by gap.degree
, only bottom and top margin need to be set. And all cells in a same track share the same margins, and
that's why this parameter is called track.margin
. The value for the track.margin
is the percentage according to the radius of the unit circle. convert_height
can be used to set to an absolute unit (e.g cm/inche).
unit.circle.segments
Since curves are simulated by a series of straight lines,
this parameter controls the amount of segments to represent a curve. The minimal length
of the line segmentation is the length of the unit circle (2pi
) divided by unit.circoe.segments
.
More segments means better approximation for the curves while larger size if you generate figures as PDF format.
cell.padding
Padding of the cell. Like padding
in Cascading Style Sheets
(CSS), it is the blank area around the plotting regions, but within the borders.
The parameter has four values, which controls the bottom, left, top and right paddings
respectively. The first and the third padding
values are the percentages according to the radius of the unit circle and the second and
fourth values are degrees. Similar as track.margin
option, the first and the third value
can be set by convert_height
to an absolute unit.
track.height
The default height of tracks. It is the percentage according to the radius
of the unit circle. The height includes the top and bottom cell paddings but not the margins.
convert_height
can be used to set the height to an absolute unit.
points.overflow.warning
Since each cell is in fact not a real plotting region but only
an ordinary rectangle, it does not eliminate points that are plotted out of
the region. So if some points are out of the plotting region, circlize
would continue drawing the points and printing warnings. In some
cases, draw something out of the plotting region is useful, such as draw
some legend or text. Set this value to FALSE
to turn off the warnings.
circle.margin
Margin in the horizontal and vertical direction. The value should be a positive numeric vector
and the length of it should be either 1, 2, or 4. When it has length of 1, it controls the margin on the four sides of the circle.
When it has length of 2, the first value controls the margin on the left and right, and the second value controls
the margin on the bottom and top side. When it has length of 4, the four values controls the margins on the left, right, bottom and top sides
of the circle. So A value of c(x1, x2, y1, y2)
means circos.par(canvas.xlim = c(-(1+x1), 1+x2), canvas.ylim = c(-(1+y1), 1+y2))
.
canvas.xlim
The coordinate for the canvas. Because circlize
draws everything (or almost everything) inside the unit circle,
the default canvas.xlim
and canvas.ylim
for the canvas would be all c(-1, 1)
. However, you can set it to a more broad
interval if you want to draw other things out of the circle. By choosing proper
canvas.xlim
and canvas.ylim
, you can draw part of the circle. E.g. setting
canvas.xlim
to c(0, 1)
and canvas.ylim
to c(0, 1)
would only draw
circle in the region of (0, pi/2).
canvas.ylim
The coordinate for the canvas. By default it is c(-1, 1)
clock.wise
The direction for adding sectors. Default is TRUE
.
xaxis.clock.wise
The direction in the x-axes for all sectors. Default is TRUE
.
Similar as par
, you can get the parameter values by specifying the
names of parameters and you can set the parameter values by specifying a
named list which contains the new values.
gap.degree
, start.degree
, canvas.xlim
, canvas.ylim
and clock.wise
only be set before the initialization of the circular layout
(i.e. before calling circos.initialize
) because these values will not be changed after
adding sectors on the circle. The left and right padding for cell.padding
will also be
ignored after the initialization because all cells in a sector would share the same
left and right paddings.
https://jokergoo.github.io/circlize_book/book/circular-layout.html#graphic-parameters
circos.par
circos.par
Add points to a plotting region
circos.points( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"))
circos.points( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"))
x |
Data points on x-axis, measured in "current" data coordinate |
y |
Data points on y-axis, measured in "current" data coordinate |
sector.index |
Index for the sector |
track.index |
Index for the track |
pch |
Point type |
col |
Point color |
cex |
Point size |
bg |
backgrond of points |
This function can only add points in one specified cell. Pretending a low-level plotting function, it can only be applied in plotting region which has been created.
You can think the function similar as the normal points
function, just adding points in the circular plotting region. The position of
cell is identified by sector.index
and track.index
, if they are not
specified, they are in 'current' sector and 'current' track.
Data points out of the plotting region will also be added, but with warning messages.
Other graphics parameters which are available in the function are pch
, col
and cex
which have same meaning as those in the par
.
It is recommended to use circos.points
inside panel.fun
in circos.trackPlotRegion
so that
it draws points directly on "curent" cell.
https://jokergoo.github.io/circlize_book/book/graphics.html#points
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.points(runif(10), runif(10)) }) circos.points(runif(10), runif(10), sector.index = "c", pch = 16, col = "red") circos.clear()
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.points(runif(10), runif(10)) }) circos.points(runif(10), runif(10), sector.index = "c", pch = 16, col = "red") circos.clear()
Draw polygon
circos.polygon( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
circos.polygon( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
x |
Data points on x-axis |
y |
Data points on y-axis |
sector.index |
Index for the sector |
track.index |
Index for the track |
... |
pass to |
similar as polygon
.
Note: start point should overlap with the end point.
set.seed(123) sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(-3, 3), track.height = 0.4, panel.fun = function(x, y) { x1 = runif(20) y1 = x1 + rnorm(20) or = order(x1) x1 = x1[or] y1 = y1[or] loess.fit = loess(y1 ~ x1) loess.predict = predict(loess.fit, x1, se = TRUE) d1 = c(x1, rev(x1)) d2 = c(loess.predict$fit + loess.predict$se.fit, rev(loess.predict$fit - loess.predict$se.fit)) circos.polygon(d1, d2, col = "#CCCCCC", border = NA) circos.points(x1, y1, cex = 0.5) circos.lines(x1, loess.predict$fit) }) circos.clear()
set.seed(123) sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(-3, 3), track.height = 0.4, panel.fun = function(x, y) { x1 = runif(20) y1 = x1 + rnorm(20) or = order(x1) x1 = x1[or] y1 = y1[or] loess.fit = loess(y1 ~ x1) loess.predict = predict(loess.fit, x1, se = TRUE) d1 = c(x1, rev(x1)) d2 = c(loess.predict$fit + loess.predict$se.fit, rev(loess.predict$fit - loess.predict$se.fit)) circos.polygon(d1, d2, col = "#CCCCCC", border = NA) circos.points(x1, y1, cex = 0.5) circos.lines(x1, loess.predict$fit) }) circos.clear()
Add raster images
circos.raster( image, x, y, width, height, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending.inside", "bending.outside"), niceFacing = FALSE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), scaling = 1)
circos.raster( image, x, y, width, height, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending.inside", "bending.outside"), niceFacing = FALSE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), scaling = 1)
image |
A |
x |
Position of the center of the raster image, measued in the data coordinate in the cell. |
y |
Position of the center of the raster image, measued in the data coordinate in the cell. |
width |
Width of the raster image. When |
height |
Height of the raster image. Same format as |
facing |
Facing of the raster image. |
niceFacing |
Facing of text. Please refer to vignette for different settings. |
sector.index |
Index for the sector. |
track.index |
Index for the track. |
scaling |
Scaling factor to resize the raster image. |
https://jokergoo.github.io/circlize_book/book/graphics.html#raster-image
require(png) image = system.file("extdata", "Rlogo.png", package = "circlize") image = as.raster(readPNG(image)) circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.raster(image, CELL_META$xcenter, CELL_META$ycenter, width = "2cm", facing = "inside", niceFacing = TRUE) }) circos.clear() if(FALSE) { # NOTE: following takes quite a long time to run load(system.file("extdata", "doodle.RData", package = "circlize")) circos.par("cell.padding" = c(0, 0, 0, 0)) circos.initialize(letters[1:16], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { img = img_list[[CELL_META$sector.numeric.index]] circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1, height = 1, facing = "bending.inside") }, track.height = 0.25, bg.border = NA) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { img = img_list[[CELL_META$sector.numeric.index + 16]] circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1, height = 1, facing = "bending.inside") }, track.height = 0.25, bg.border = NA) circos.clear() }
require(png) image = system.file("extdata", "Rlogo.png", package = "circlize") image = as.raster(readPNG(image)) circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.raster(image, CELL_META$xcenter, CELL_META$ycenter, width = "2cm", facing = "inside", niceFacing = TRUE) }) circos.clear() if(FALSE) { # NOTE: following takes quite a long time to run load(system.file("extdata", "doodle.RData", package = "circlize")) circos.par("cell.padding" = c(0, 0, 0, 0)) circos.initialize(letters[1:16], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { img = img_list[[CELL_META$sector.numeric.index]] circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1, height = 1, facing = "bending.inside") }, track.height = 0.25, bg.border = NA) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { img = img_list[[CELL_META$sector.numeric.index + 16]] circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1, height = 1, facing = "bending.inside") }, track.height = 0.25, bg.border = NA) circos.clear() }
Draw rectangle-like grid
circos.rect( xleft, ybottom, xright, ytop, sector.index = get.current.sector.index(), track.index = get.current.track.index(), radius = NULL, rot = 0, ...)
circos.rect( xleft, ybottom, xright, ytop, sector.index = get.current.sector.index(), track.index = get.current.track.index(), radius = NULL, rot = 0, ...)
xleft |
x for the left bottom points |
ybottom |
y for the left bottom points |
xright |
x for the right top points |
ytop |
y for the right top points |
sector.index |
Index for the sector |
track.index |
Index for the track |
radius |
Radius of the corners of rectangulars. Please set it in a form of "3mm". |
rot |
Rotation of the rectangles. The value is measured clockwise in degree. Rotation is relative to the center of the rectangles. |
... |
pass to |
The name for this function is circos.rect
because if you imagine the plotting region as Cartesian coordinate, then it is rectangle.
in the polar coordinate, the up and bottom edge become two arcs.
This function can be vectorized.
circos.initialize(c("a", "b", "c", "d"), xlim = c(0, 10)) circos.track(ylim = c(0, 10), panel.fun = function(x, y) { for(rot in seq(0, 360, by = 30)) { circos.rect(2, 2, 6, 6, rot = rot) } }, track.height = 0.5)
circos.initialize(c("a", "b", "c", "d"), xlim = c(0, 10)) circos.track(ylim = c(0, 10), panel.fun = function(x, y) { for(rot in seq(0, 360, by = 30)) { circos.rect(2, 2, 6, 6, rot = rot) } }, track.height = 0.5)
Draw segments through pairwise of points
circos.segments( x0, y0, x1, y1, sector.index = get.current.sector.index(), track.index = get.current.track.index(), straight = FALSE, col = par("col"), lwd = par("lwd"), lty = par("lty"), ...)
circos.segments( x0, y0, x1, y1, sector.index = get.current.sector.index(), track.index = get.current.track.index(), straight = FALSE, col = par("col"), lwd = par("lwd"), lty = par("lty"), ...)
x0 |
x coordinates for starting points. |
y0 |
y coordinates for ending points. |
x1 |
x coordinates for starting points. |
y1 |
y coordinates for ending points. |
sector.index |
Index for the sector. |
track.index |
Index for the track. |
straight |
Whether the segment is a straight line. |
col |
Color of the segments. |
lwd |
Line width of the segments. |
lty |
Line type of the segments. |
... |
Pass to |
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.3, panel.fun = function(x, y) { x = seq(0.2, 0.8, by = 0.2) y = seq(0.2, 0.8, by = 0.2) circos.segments(x, 0.1, x, 0.9) circos.segments(0.1, y, 0.9, y) }) circos.clear()
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), track.height = 0.3, panel.fun = function(x, y) { x = seq(0.2, 0.8, by = 0.2) y = seq(0.2, 0.8, by = 0.2) circos.segments(x, 0.1, x, 0.9) circos.segments(0.1, y, 0.9, y) }) circos.clear()
Add a stacked text track
circos.stackedText(sectors, x, text, col = par("col"), font = par("font"), cex = par("cex"), family = par("family"), bg.border = "black", bg.col = "#FF8080", niceFacing = FALSE, side = c("outside", "inside"))
circos.stackedText(sectors, x, text, col = par("col"), font = par("font"), cex = par("cex"), family = par("family"), bg.border = "black", bg.col = "#FF8080", niceFacing = FALSE, side = c("outside", "inside"))
sectors |
A vector of sector names. |
x |
A vector of x-coordinates. |
text |
A vector of texts. |
bg.border |
Background color. |
bg.col |
Colors for borders. |
niceFacing |
Current not supported. |
side |
Side of the track. |
col |
Text colors. |
font |
Text fontfaces. |
cex |
Font sizes. |
family |
Font families. |
The height of the track is not fixed, so you may need to manually adjust the track height.
## Not run: circos.par$circle.margin = 0.5 circos.par$cell.padding = rep(0, 4) circos.par$track.margin = rep(0, 2) circos.initialize(sectors = letters[1:4], xlim = c(0, 1)) sectors = sample(letters[1:4], 40, replace = TRUE) x = runif(40) text = sapply(letters[sample(26, 40, replace = TRUE)], function(x) strrep(x, sample(4:6, 1))) circos.stackedText(sectors, x, text, bg.col = "#EEEEEE") circos.track(ylim = c(0, 1)) circos.clear() #### genome plot circos.par$track.margin = rep(0, 2) circos.par$cell.padding = rep(0, 4) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(50) text = sapply( letters[sample(26, nrow(bed), replace = TRUE)], function(x) strrep(x, sample(4:6, 1)) ) bed$text = text circos.stackedText(bed[, 1], bed[, 2], bed$text, cex = 0.7) circos.genomicIdeogram() circos.clear() ## End(Not run)
## Not run: circos.par$circle.margin = 0.5 circos.par$cell.padding = rep(0, 4) circos.par$track.margin = rep(0, 2) circos.initialize(sectors = letters[1:4], xlim = c(0, 1)) sectors = sample(letters[1:4], 40, replace = TRUE) x = runif(40) text = sapply(letters[sample(26, 40, replace = TRUE)], function(x) strrep(x, sample(4:6, 1))) circos.stackedText(sectors, x, text, bg.col = "#EEEEEE") circos.track(ylim = c(0, 1)) circos.clear() #### genome plot circos.par$track.margin = rep(0, 2) circos.par$cell.padding = rep(0, 4) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(50) text = sapply( letters[sample(26, nrow(bed), replace = TRUE)], function(x) strrep(x, sample(4:6, 1)) ) bed$text = text circos.stackedText(bed[, 1], bed[, 2], bed$text, cex = 0.7) circos.genomicIdeogram() circos.clear() ## End(Not run)
Draw text in a cell
circos.text( x, y, labels, sector.index = get.current.sector.index(), track.index = get.current.track.index(), direction = NULL, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending", "bending.inside", "bending.outside"), niceFacing = FALSE, adj = par("adj"), cex = 1, col = par("col"), font = par("font"), ...)
circos.text( x, y, labels, sector.index = get.current.sector.index(), track.index = get.current.track.index(), direction = NULL, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending", "bending.inside", "bending.outside"), niceFacing = FALSE, adj = par("adj"), cex = 1, col = par("col"), font = par("font"), ...)
x |
Data points on x-axis |
y |
Data points on y-axis |
labels |
Labels for each points |
sector.index |
Index for the sector |
track.index |
Index for the track |
direction |
deprecated, use |
facing |
Facing of text. Please refer to vignette for different settings |
niceFacing |
Should the facing of text be adjusted to fit human eyes? |
adj |
offset for text. By default the text position adjustment is either horizontal or vertical in the canvas coordinate system. The "circular horizontal" offset can be set as a value in degree unit and the value should be wrapped by |
... |
Pass to |
cex |
Font size |
col |
Font color |
font |
Font style |
The function is similar to text
. All you need to note is the facing
settings.
https://jokergoo.github.io/circlize_book/book/graphics.html#text
sectors = letters[1:4] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5, panel.fun = function(x, y) { circos.text(3, 1, "inside", facing = "inside", cex = 0.8) circos.text(7, 1, "outside", facing = "outside", cex = 0.8) circos.text(0, 5, "reverse.clockwise", facing = "reverse.clockwise", adj = c(0.5, 0), cex = 0.8) circos.text(10, 5, "clockwise", facing = "clockwise", adj = c(0.5, 0), cex = 0.8) circos.text(5, 5, "downward", facing = "downward", cex = 0.8) circos.text(3, 9, "====bending.inside====", facing = "bending.inside", cex = 0.8) circos.text(7, 9, "====bending.outside====", facing = "bending.outside", cex = 0.8) }) circos.clear()
sectors = letters[1:4] circos.par(points.overflow.warning = FALSE) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5, panel.fun = function(x, y) { circos.text(3, 1, "inside", facing = "inside", cex = 0.8) circos.text(7, 1, "outside", facing = "outside", cex = 0.8) circos.text(0, 5, "reverse.clockwise", facing = "reverse.clockwise", adj = c(0.5, 0), cex = 0.8) circos.text(10, 5, "clockwise", facing = "clockwise", adj = c(0.5, 0), cex = 0.8) circos.text(5, 5, "downward", facing = "downward", cex = 0.8) circos.text(3, 9, "====bending.inside====", facing = "bending.inside", cex = 0.8) circos.text(7, 9, "====bending.outside====", facing = "bending.outside", cex = 0.8) }) circos.clear()
Create plotting regions for a whole track
circos.track(...)
circos.track(...)
... |
Pass to |
Shortcut function of circos.trackPlotRegion
.
# There is no example NULL
# There is no example NULL
Draw histogram in cells among a whole track
circos.trackHist( sectors, x, track.height = circos.par("track.height"), track.index = NULL, ylim = NULL, force.ylim = TRUE, col = ifelse(draw.density, "black", NA), border = "black", lty = par("lty"), lwd = par("lwd"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"), breaks = "Sturges", include.lowest = TRUE, right = TRUE, draw.density = FALSE, bin.size = NULL, area = FALSE, factors = sectors)
circos.trackHist( sectors, x, track.height = circos.par("track.height"), track.index = NULL, ylim = NULL, force.ylim = TRUE, col = ifelse(draw.density, "black", NA), border = "black", lty = par("lty"), lwd = par("lwd"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"), breaks = "Sturges", include.lowest = TRUE, right = TRUE, draw.density = FALSE, bin.size = NULL, area = FALSE, factors = sectors)
sectors |
A |
factors |
The same as |
x |
Data on the x-axis |
track.index |
Index for the track which is going to be updated. Setting it to |
track.height |
Height of the track. It is the percentage to the radius of the unit circle. If to update a track, this argument is disabled. |
ylim |
Ranges on y-direction. By default, |
force.ylim |
Whether to force all cells in the track to share the same |
col |
Filled color for histogram |
border |
Border color for histogram |
lty |
Line style for histogram |
lwd |
Line width for histogram |
bg.col |
Background color for the plotting regions |
bg.border |
Color for the border of the plotting regions |
bg.lty |
Line style for the border of the plotting regions |
bg.lwd |
Line width for the border of the plotting regions |
breaks |
see |
include.lowest |
see |
right |
see |
draw.density |
whether draw density lines instead of histogram bars. |
area |
whether to fill the area below the density lines. If it is set to |
bin.size |
size of the bins of the histogram |
It draw histogram in cells among a whole track. It is also an example to show how to add self-defined high-level graphics by this package.
https://jokergoo.github.io/circlize_book/book/high-level-plots.html#histograms
x = rnorm(1600) sectors = sample(letters[1:16], 1600, replace = TRUE) circos.initialize(sectors, x = x) circos.trackHist(sectors, x = x, col = "#999999", border = "#999999") circos.trackHist(sectors, x = x, bin.size = 0.1, col = "#999999", border = "#999999") circos.trackHist(sectors, x = x, draw.density = TRUE, col = "#999999", border = "#999999") circos.clear()
x = rnorm(1600) sectors = sample(letters[1:16], 1600, replace = TRUE) circos.initialize(sectors, x = x) circos.trackHist(sectors, x = x, col = "#999999", border = "#999999") circos.trackHist(sectors, x = x, bin.size = 0.1, col = "#999999", border = "#999999") circos.trackHist(sectors, x = x, draw.density = TRUE, col = "#999999", border = "#999999") circos.clear()
Add lines to the plotting regions in a same track
circos.trackLines( sectors, x, y, track.index = get.current.track.index(), col = par("col"), lwd = par("lwd"), lty = par("lty"), type = "l", straight = FALSE, area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"), factors = sectors)
circos.trackLines( sectors, x, y, track.index = get.current.track.index(), col = par("col"), lwd = par("lwd"), lty = par("lty"), type = "l", straight = FALSE, area = FALSE, area.baseline = NULL, border = "black", baseline = "bottom", pt.col = par("col"), cex = par("cex"), pch = par("pch"), factors = sectors)
sectors |
A |
factors |
The same as |
x |
Data points on x-axis. |
y |
Data points on y-axis. |
track.index |
Index for the track. |
col |
Line color. |
lwd |
Line width. |
lty |
Line style. |
type |
Line type, similar as |
straight |
Whether draw straight lines between points. |
area |
Whether to fill the area below the lines. If it is set to |
area.baseline |
Deprecated, use |
baseline |
The base line to draw area, pass to |
border |
Color for border of the area. |
pt.col |
If |
cex |
If |
pch |
If |
The function adds lines in multiple cells by first splitting data into several parts in which
each part corresponds to one factor (sector index) and then add lines in cells by calling circos.lines
.
This function can be replaced by a for
loop containing circos.lines
.
# There is no example NULL
# There is no example NULL
Create plotting regions for a whole track
circos.trackPlotRegion( sectors = NULL, x = NULL, y = NULL, ylim = NULL, force.ylim = TRUE, track.index = NULL, track.height = circos.par("track.height"), track.margin = circos.par("track.margin"), cell.padding = circos.par("cell.padding"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"), panel.fun = function(x, y) {NULL}, radius = NULL, factors = sectors)
circos.trackPlotRegion( sectors = NULL, x = NULL, y = NULL, ylim = NULL, force.ylim = TRUE, track.index = NULL, track.height = circos.par("track.height"), track.margin = circos.par("track.margin"), cell.padding = circos.par("cell.padding"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"), panel.fun = function(x, y) {NULL}, radius = NULL, factors = sectors)
sectors |
A |
factors |
The same as |
x |
Data on x-axis. It is only used if |
y |
Data on y-axis |
ylim |
Range of data on y-axis |
force.ylim |
Whether to force all cells in the track to share the same |
track.index |
Index for the track which is going to be created/updated. If the specified track has already been created, this function just updated corresponding track with new plot. If the specified track is |
track.height |
Height of the track. It is the percentage to the radius of the unit circles. The value can be set by |
track.margin |
only affect current track |
cell.padding |
only affect current track |
bg.col |
Background color for the plotting regions. It can be vector which has the same length of sectors. |
bg.border |
Color for the border of the plotting regions. It can be vector which has the same length of sectors. |
bg.lty |
Line style for the border of the plotting regions. It can be vector which has the same length of sectors. |
bg.lwd |
Line width for the border of the plotting regions. It can be vector which has the same length of sectors. |
panel.fun |
Panel function to add graphics in each cell, see "details" section and vignette for explanation. |
radius |
Radius of the corners of background rectangular. Please set it in a form of "3mm". |
This function tends to be a high-level plotting function, which means,
you must first call this function to create plotting regions, then those
low-level graphic function such as circos.points
, circos.lines
can be
applied.
Currently, all the cells that are created in a same track sharing same height, which means, there is no cell has larger height than others.
Since ranges for values on x-axis has already been defined by circos.initialize
, only
ranges for values on y-axis should be specified in this function.
There are two ways to identify the ranges for values on y-axes either by y
or ylim
. If y
is set, it must has the same length as factors
and the ylim
for each cell is calculated
from y values. Also, the ylim can be specified from ylim
which can be a two-element vector or a matrix which
has two columns and the number of rows is the same as the length of the levels of the factors.
If there is no enough space for the new track or the new track overlaps with other tracks, there will be an error.
If factors
does not cover all sectors, the cells in remaining unselected
sectors would also be created but without drawing anything. The ylim
for these cells
are the same as that in the last created cell.
The function can also update a already-created track if the index for the track is specified. If updating an existed track, those parameters related to the position (such as track height and track margin) of the plotting region can not be changed.
panel.fun
provides a convenient way to add graphics in each cell when initializing the
tracks. The self-defined function needs two arguments: x
and y
which correspond to the data points
in the current cell. When factors
, x
, and y
are set in circos.trackPlotRegion
, a subset of x
and y
are split by factors
and are sent to panel.fun
in the "current" cell.
circos.trackPlotRegion
creates plotting regions one by one on the track and
panel.fun
adds graphics in the 'current' cell after the plotting region for a certain cell has been
created.
See vignette for examples of how to use this feature.
https://jokergoo.github.io/circlize_book/book/circular-layout.html
circos.initialize(letters[1:8], xlim = c(0, 1)) set.seed(123) df = data.frame(fa = sample(letters[1:8], 100, replace = TRUE), x = runif(100), y = rnorm(100)) circos.track(ylim = c(0, 1), bg.col = rand_color(8)) circos.track(df$fa, x = df$x, y = df$y, panel.fun = function(x, y) { circos.points(x, y) }, track.height = 0.2, bg.border = rand_color(8)) circos.clear()
circos.initialize(letters[1:8], xlim = c(0, 1)) set.seed(123) df = data.frame(fa = sample(letters[1:8], 100, replace = TRUE), x = runif(100), y = rnorm(100)) circos.track(ylim = c(0, 1), bg.col = rand_color(8)) circos.track(df$fa, x = df$x, y = df$y, panel.fun = function(x, y) { circos.points(x, y) }, track.height = 0.2, bg.border = rand_color(8)) circos.clear()
Add points to the plotting regions in a same track
circos.trackPoints( sectors, x, y, track.index = get.current.track.index(), pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"), factors = sectors)
circos.trackPoints( sectors, x, y, track.index = get.current.track.index(), pch = par("pch"), col = par("col"), cex = par("cex"), bg = par("bg"), factors = sectors)
sectors |
A |
factors |
The same as |
x |
Data points on x-axis |
y |
Data points on y-axis |
track.index |
Index for the track |
pch |
Point type |
col |
Point color |
cex |
Point size |
bg |
backgrond color |
The function adds points in multiple cells by first splitting data into several parts in which
each part corresponds to one factor (sector index) and then adding points in each cell by calling circos.points
.
Length of pch
, col
and cex
can be one, length of levels of the factors or length of
factors.
This function can be replaced by a for
loop containing circos.points
.
circos.initialize(letters[1:8], xlim = c(0, 1)) df = data.frame(sectors = sample(letters[1:8], 100, replace = TRUE), x = runif(100), y = runif(100)) circos.track(ylim = c(0, 1)) circos.trackPoints(df$sectors, x = df$x, y = df$y, pch = 16, col = as.numeric(factor(df$fa))) circos.clear()
circos.initialize(letters[1:8], xlim = c(0, 1)) df = data.frame(sectors = sample(letters[1:8], 100, replace = TRUE), x = runif(100), y = runif(100)) circos.track(ylim = c(0, 1)) circos.trackPoints(df$sectors, x = df$x, y = df$y, pch = 16, col = as.numeric(factor(df$fa))) circos.clear()
Draw text in cells among the whole track
circos.trackText( sectors, x, y, labels, track.index = get.current.track.index(), direction = NULL, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending", "bending.inside", "bending.outside"), niceFacing = FALSE, adj = par("adj"), cex = 1, col = par("col"), font = par("font"), factors = sectors)
circos.trackText( sectors, x, y, labels, track.index = get.current.track.index(), direction = NULL, facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward", "bending", "bending.inside", "bending.outside"), niceFacing = FALSE, adj = par("adj"), cex = 1, col = par("col"), font = par("font"), factors = sectors)
sectors |
A |
factors |
The same as |
x |
Data points on x-axis |
y |
Data points on y-axis |
labels |
Labels |
track.index |
Index for the track |
direction |
deprecated, use |
facing |
Facing of text |
niceFacing |
Should the facing of text be adjusted to fit human eyes? |
adj |
Adjustment for text |
cex |
Font size |
col |
Font color |
font |
Font style |
The function adds texts in multiple cells by first splitting data into several parts in which
each part corresponds to one factor (sector index) and then add texts in cells by calling circos.text
.
This function can be replaced by a for
loop containing circos.text
.
# There is no example NULL
# There is no example NULL
Draw triangles
circos.triangle(x1, y1, x2, y2, x3, y3, ...)
circos.triangle(x1, y1, x2, y2, x3, y3, ...)
x1 |
x-coordinates for the first point. |
y1 |
y-coordinates for the first point. |
x2 |
x-coordinates for the second point. |
y2 |
y-coordinates for the second point. |
x3 |
x-coordinates for the third point. |
y3 |
y-coordinates for the third point. |
... |
Pass to |
circos.initialize(c("a", "b", "c", "d"), xlim = c(0, 10)) circos.track(ylim = c(0, 10), panel.fun = function(x, y) { circos.triangle(c(2, 2), c(2, 8), c(8, 8), c(2, 8), c(5, 5), c(8, 2)) }, track.height = 0.5)
circos.initialize(c("a", "b", "c", "d"), xlim = c(0, 10)) circos.track(ylim = c(0, 10), panel.fun = function(x, y) { circos.triangle(c(2, 2), c(2, 8), c(8, 8), c(2, 8), c(5, 5), c(8, 2)) }, track.height = 0.5)
Create plotting regions for a whole track
circos.update(...)
circos.update(...)
... |
pass to |
shortcut function of circos.updatePlotRegion
.
# There is no example NULL
# There is no example NULL
Update the plotting region in an existed cell
circos.updatePlotRegion( sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"))
circos.updatePlotRegion( sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), bg.col = NA, bg.border = "black", bg.lty = par("lty"), bg.lwd = par("lwd"))
sector.index |
Index for the sector |
track.index |
Index for the track |
bg.col |
Background color for the plotting region |
bg.border |
Color for the border of the plotting region |
bg.lty |
Line style for the border of the plotting region |
bg.lwd |
Line width for the border of the plotting region |
You can update an existed cell by this function by erasing all the graphics.
But the xlim
and ylim
inside the cell still remain unchanged.
Note if you use circos.track
to update an already created track,
you can re-define ylim
in these cells.
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index) }) circos.update(sector.index = "b", track.index = 1) circos.rect(CELL_META$cell.xlim[1], CELL_META$cell.ylim[1], CELL_META$cell.xlim[2], CELL_META$cell.ylim[2], col = "#FF000080") circos.clear()
circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index) }) circos.update(sector.index = "b", track.index = 1) circos.rect(CELL_META$cell.xlim[1], CELL_META$cell.ylim[1], CELL_META$cell.xlim[2], CELL_META$cell.ylim[2], col = "#FF000080") circos.clear()
Draw violin plots
circos.violin(value, pos, violin_width = 0.8, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), show_quantile = TRUE, pt.col = par("col"), cex = par("cex"), pch = 16, max_density = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index())
circos.violin(value, pos, violin_width = 0.8, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"), show_quantile = TRUE, pt.col = par("col"), cex = par("cex"), pch = 16, max_density = NULL, sector.index = get.current.sector.index(), track.index = get.current.track.index())
value |
A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by columns. |
pos |
Positions of the boxes. |
violin_width |
Width of violins. |
col |
Filled color of boxes. |
border |
Color for the border as well as the quantile lines. |
lwd |
Line width. |
lty |
Line style |
show_quantile |
Whether to show the quantile lines. |
cex |
Point size. |
pch |
Point type. |
pt.col |
Point color |
max_density |
The maximal density value across several violins. It is used to compare between violins. |
sector.index |
Index of sector. |
track.index |
Index of track. |
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { for(pos in seq(0.5, 9.5, by = 1)) { value = runif(10) circos.violin(value, pos) } }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = replicate(runif(10), n = 10, simplify = FALSE) circos.violin(value, 1:10 - 0.5, col = 1:10) }) circos.clear()
circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { for(pos in seq(0.5, 9.5, by = 1)) { value = runif(10) circos.violin(value, pos) } }) circos.clear() circos.initialize(letters[1:4], xlim = c(0, 10)) circos.track(ylim = c(0, 1), panel.fun = function(x, y) { value = replicate(runif(10), n = 10, simplify = FALSE) circos.violin(value, 1:10 - 0.5, col = 1:10) }) circos.clear()
Draw x-axis
circos.xaxis(...)
circos.xaxis(...)
... |
All pass to |
This function is identical to circos.axis
.
# There is no example NULL
# There is no example NULL
Draw y-axis
circos.yaxis( side = c("left", "right"), at = NULL, labels = TRUE, tick = TRUE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), labels.font = par("font"), labels.cex = par("cex"), labels.niceFacing = TRUE, tick.length = convert_x(1, "mm", sector.index, track.index), lwd = par("lwd"), col = par("col"), labels.col = par("col"))
circos.yaxis( side = c("left", "right"), at = NULL, labels = TRUE, tick = TRUE, sector.index = get.current.sector.index(), track.index = get.current.track.index(), labels.font = par("font"), labels.cex = par("cex"), labels.niceFacing = TRUE, tick.length = convert_x(1, "mm", sector.index, track.index), lwd = par("lwd"), col = par("col"), labels.col = par("col"))
side |
add the y-axis on the left or right of the cell |
at |
If it is numeric vector, it identifies the positions of the ticks. It can exceed |
labels |
labels of the ticks. The exceeding part would be trimmed automatically. The value can also be logical (either an atomic value or a vector) which represents which labels to show. |
tick |
Whether to draw ticks. |
sector.index |
Index for the sector |
track.index |
Index for the track |
labels.font |
font style for the axis labels |
labels.cex |
font size for the axis labels |
labels.niceFacing |
Should facing of axis labels be human-easy |
tick.length |
length of the tick |
lwd |
line width for ticks |
col |
color for the axes |
labels.col |
color for the labels |
Note, you need to set the gap between sectors manually by circos.par
to make sure there is enough space
for y-axis.
op = par(no.readonly = TRUE) sectors = letters[1:8] circos.par(points.overflow.warning = FALSE) circos.par(gap.degree = 8) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5) par(cex = 0.8) for(a in letters[2:4]) { circos.yaxis(side = "left", sector.index = a) } for(a in letters[5:7]) { circos.yaxis(side = "right", sector.index = a) } circos.clear() par(op)
op = par(no.readonly = TRUE) sectors = letters[1:8] circos.par(points.overflow.warning = FALSE) circos.par(gap.degree = 8) circos.initialize(sectors, xlim = c(0, 10)) circos.trackPlotRegion(sectors, ylim = c(0, 10), track.height = 0.5) par(cex = 0.8) for(a in letters[2:4]) { circos.yaxis(side = "left", sector.index = a) } for(a in letters[5:7]) { circos.yaxis(side = "right", sector.index = a) } circos.clear() par(op)
Convert units
cm_h(h)
cm_h(h)
h |
The height in numeric. |
See explanations in convert_length
page.
Zuguang Gu <[email protected]>
# see examples in `convert_length` page NULL
# see examples in `convert_length` page NULL
Convert unit on x direction in data coordinate
cm_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
cm_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
x |
The x-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
... |
Pass to |
See explanations in convert_x
page.
Zuguang Gu <[email protected]>
# see examples in `convert_x` page NULL
# see examples in `convert_x` page NULL
Convert unit on y direction in data coordinate
cm_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
cm_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
y |
The y-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
See explanations in convert_y
page.
Zuguang Gu <[email protected]>
# see examples in `convert_y` page NULL
# see examples in `convert_y` page NULL
Transform back from colors to values
col2value(r, g, b, col_fun)
col2value(r, g, b, col_fun)
r |
red channel in |
g |
green channel in |
b |
blue channel in |
col_fun |
the color mapping function generated by |
colorRamp2
transforms values to colors and this function does the reversed job.
Note for some color spaces, it cannot transform back to the original value perfectly.
A vector of original numeric values.
Zuguang Gu <[email protected]>
x = seq(0, 1, length.out = 11) col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")) col = col_fun(x) col2value(col, col_fun = col_fun) col2value("red", col_fun = col_fun) col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"), space = "sRGB") col = col_fun(x) col2value(col, col_fun = col_fun)
x = seq(0, 1, length.out = 11) col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")) col = col_fun(x) col2value(col, col_fun = col_fun) col2value("red", col_fun = col_fun) col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"), space = "sRGB") col = col_fun(x) col2value(col, col_fun = col_fun)
Color interpolation
colorRamp2(breaks, colors, transparency = 0, space = "LAB", hcl_palette = NULL, reverse = FALSE)
colorRamp2(breaks, colors, transparency = 0, space = "LAB", hcl_palette = NULL, reverse = FALSE)
breaks |
A vector indicating numeric breaks |
colors |
A vector of colors which correspond to values in |
transparency |
A single value in |
space |
color space in which colors are interpolated. Value should be one of "RGB", "LAB", "XYZ", "sRGB", "LUV", see |
hcl_palette |
Name of the HCL palette. Value should be supported in |
reverse |
Whether should the colors in |
Colors are linearly interpolated according to break values and corresponding colors through CIE Lab color space (LAB
) by default.
Values exceeding breaks will be assigned with corresponding maximum or minimum colors.
It returns a function which accepts a vector of numeric values and returns interpolated colors.
col2value
converts back to the original values by providing the color mapping function generated by colorRamp2
.
col_fun = colorRamp2(c(-1, 0, 1), c("green", "white", "red")) col_fun(c(-2, -1, -0.5, 0, 0.5, 1, 2))
col_fun = colorRamp2(c(-1, 0, 1), c("green", "white", "red")) col_fun(c(-2, -1, -0.5, 0, 0.5, 1, 2))
Convert units
convert_height(...)
convert_height(...)
... |
pass to |
This function is same as convert_length
. The reason for naming this function
is convert_length
is mostely used for defining the height of tracks and track margins.
Zuguang Gu <[email protected]>
For pre-defined units, users can use cm_h
, mm_h
and inches_h
.
# see example in `convert_length` page NULL
# see example in `convert_length` page NULL
Convert units
convert_length(x, unit = c("mm", "cm", "inches"))
convert_length(x, unit = c("mm", "cm", "inches"))
x |
a numeric vector |
unit |
supported units, only "mm", "cm", "inches". |
This function coverts mm/cm/inches units to units measured in the canvas coordinate, e.g. how much is it in the canvas coordinate for 1 mm/cm/inches.
Since in the circular plot, the aspect ratio is always 1, it does not matter this conversion is applied on x direction or y direction.
This function is mainly used in the radical direction.
Zuguang Gu <[email protected]>
convert_x
and convert_y
convert absolute units into a data coordinate in a specified cell.
https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions
sectors = letters[1:10] circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0)) circos.initialize(sectors, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5))) circos.track(ylim = c(0, 1), track.height = mm_h(5)) circos.par(track.margin = c(0, mm_h(2))) circos.track(ylim = c(0, 1), track.height = cm_h(1)) circos.par(track.margin = c(0, mm_h(5))) circos.track(ylim = c(0, 1), track.height = inch_h(1)) circos.clear()
sectors = letters[1:10] circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0)) circos.initialize(sectors, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5))) circos.track(ylim = c(0, 1), track.height = mm_h(5)) circos.par(track.margin = c(0, mm_h(2))) circos.track(ylim = c(0, 1), track.height = cm_h(1)) circos.par(track.margin = c(0, mm_h(5))) circos.track(ylim = c(0, 1), track.height = inch_h(1)) circos.clear()
Convert unit on x direction in data coordinate
convert_x( x, unit = c("mm", "cm", "inches"), sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), h = get.cell.meta.data("ycenter", sector.index = sector.index, track.index = track.index))
convert_x( x, unit = c("mm", "cm", "inches"), sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), h = get.cell.meta.data("ycenter", sector.index = sector.index, track.index = track.index))
x |
a numeric vector. |
unit |
supported units, only "mm", "cm", "inches". |
sector.index |
index for the sector where the conversion is applied. |
track.index |
index for the track where the conversion is applied. |
h |
since the width of the cell is not identical from the top to the bottom in the cell, the position on y direction needs to be specified. By default it is at the middle point on y-axis. |
A vector of numeric values which are measured in the specified data coordinate.
Zuguang Gu <[email protected]>
For pre-defined units, users can use cm_x
, mm_x
and inches_x
.
convert_y
converts on y direction.
https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions
sectors = letters[1:10] circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0)) circos.initialize(sectors, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5))) circos.track(ylim = c(0, 1), track.height = mm_h(5), panel.fun = function(x, y) { circos.lines(c(0, 0 + mm_x(5)), c(0.5, 0.5), col = "blue") }) circos.par(track.margin = c(0, mm_h(2))) circos.track(ylim = c(0, 1), track.height = cm_h(1), panel.fun = function(x, y) { xcenter = get.cell.meta.data("xcenter") circos.lines(c(xcenter, xcenter), c(0, cm_y(1)), col = "red") }) circos.par(track.margin = c(0, mm_h(5))) circos.track(ylim = c(0, 1), track.height = inch_h(1), panel.fun = function(x, y) { line_length_on_x = cm_x(1*sqrt(2)/2) line_length_on_y = cm_y(1*sqrt(2)/2) circos.lines(c(0, line_length_on_x), c(0, line_length_on_y), col = "orange") }) circos.clear()
sectors = letters[1:10] circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0)) circos.initialize(sectors, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5))) circos.track(ylim = c(0, 1), track.height = mm_h(5), panel.fun = function(x, y) { circos.lines(c(0, 0 + mm_x(5)), c(0.5, 0.5), col = "blue") }) circos.par(track.margin = c(0, mm_h(2))) circos.track(ylim = c(0, 1), track.height = cm_h(1), panel.fun = function(x, y) { xcenter = get.cell.meta.data("xcenter") circos.lines(c(xcenter, xcenter), c(0, cm_y(1)), col = "red") }) circos.par(track.margin = c(0, mm_h(5))) circos.track(ylim = c(0, 1), track.height = inch_h(1), panel.fun = function(x, y) { line_length_on_x = cm_x(1*sqrt(2)/2) line_length_on_y = cm_y(1*sqrt(2)/2) circos.lines(c(0, line_length_on_x), c(0, line_length_on_y), col = "orange") }) circos.clear()
Convert unit on y direction in data coordinate
convert_y( x, unit = c("mm", "cm", "inches"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
convert_y( x, unit = c("mm", "cm", "inches"), sector.index = get.current.sector.index(), track.index = get.current.track.index())
x |
a numeric vector |
unit |
supported units, only "mm", "cm", "inches" |
sector.index |
index for the sector where the conversion is applied |
track.index |
index for the track where the conversion is applied |
A vector of numeric values which are measured in the specified data coordinate
Zuguang Gu <[email protected]>
For pre-defined units, users can use cm_y
, mm_y
and inches_y
.
convert_x
converts on x direction.
https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions
# see example on `convert_x` page NULL
# see example on `convert_x` page NULL
Assign colors to cytogenetic band (hg19) according to the Giemsa stain results
cytoband.col(x)
cytoband.col(x)
x |
A vector containing the Giemsa stain results |
# There is no example NULL
# There is no example NULL
Mark the value as a degree value
degree(x)
degree(x)
x |
degree value |
a degree
object
# There is no example NULL
# There is no example NULL
Draw sectors or rings in a circle
draw.sector( start.degree = 0, end.degree = 360, rou1 = 1, rou2 = NULL, center = c(0, 0), clock.wise = TRUE, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"))
draw.sector( start.degree = 0, end.degree = 360, rou1 = 1, rou2 = NULL, center = c(0, 0), clock.wise = TRUE, col = NA, border = "black", lwd = par("lwd"), lty = par("lty"))
start.degree |
start degree for the sector |
end.degree |
end degree for the sector |
rou1 |
Radius for one of the arc in the sector |
rou2 |
Radius for the other arc in the sector |
center |
Center of the circle |
clock.wise |
The direction from |
col |
Filled color |
border |
Border color |
lwd |
Line width |
lty |
Line style |
If the interval between start
and end
(larger or equal to 360 or smaller or equal to -360)
it would draw a full circle or ring. If rou2
is set, it would draw part of a ring.
plot(c(-1, 1), c(-1, 1), type = "n", axes = FALSE, ann = FALSE, asp = 1) draw.sector(20, 0) draw.sector(30, 60, rou1 = 0.8, rou2 = 0.5, clock.wise = FALSE, col = "#FF000080") draw.sector(350, 1000, col = "#00FF0080", border = NA) draw.sector(0, 180, rou1 = 0.25, center = c(-0.5, 0.5), border = 2, lwd = 2, lty = 2) draw.sector(0, 360, rou1 = 0.7, rou2 = 0.6, col = "#0000FF80") sectors = letters[1:8] circos.initialize(sectors, xlim = c(0, 1)) for(i in 1:3) { circos.trackPlotRegion(ylim = c(0, 1)) } circos.info(plot = TRUE) draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "a"), get.cell.meta.data("cell.end.degree", sector.index = "a"), rou1 = 1, col = "#FF000040") draw.sector(0, 360, rou1 = get.cell.meta.data("cell.top.radius", track.index = 1), rou2 = get.cell.meta.data("cell.bottom.radius", track.index = 1), col = "#00FF0040") draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "e"), get.cell.meta.data("cell.end.degree", sector.index = "f"), get.cell.meta.data("cell.top.radius", track.index = 2), get.cell.meta.data("cell.bottom.radius", track.index = 3), col = "#0000FF40") pos = circlize(c(0.2, 0.8), c(0.2, 0.8), sector.index = "h", track.index = 2) draw.sector(pos[1, "theta"], pos[2, "theta"], pos[1, "rou"], pos[2, "rou"], clock.wise = TRUE, col = "#00FFFF40") circos.clear()
plot(c(-1, 1), c(-1, 1), type = "n", axes = FALSE, ann = FALSE, asp = 1) draw.sector(20, 0) draw.sector(30, 60, rou1 = 0.8, rou2 = 0.5, clock.wise = FALSE, col = "#FF000080") draw.sector(350, 1000, col = "#00FF0080", border = NA) draw.sector(0, 180, rou1 = 0.25, center = c(-0.5, 0.5), border = 2, lwd = 2, lty = 2) draw.sector(0, 360, rou1 = 0.7, rou2 = 0.6, col = "#0000FF80") sectors = letters[1:8] circos.initialize(sectors, xlim = c(0, 1)) for(i in 1:3) { circos.trackPlotRegion(ylim = c(0, 1)) } circos.info(plot = TRUE) draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "a"), get.cell.meta.data("cell.end.degree", sector.index = "a"), rou1 = 1, col = "#FF000040") draw.sector(0, 360, rou1 = get.cell.meta.data("cell.top.radius", track.index = 1), rou2 = get.cell.meta.data("cell.bottom.radius", track.index = 1), col = "#00FF0040") draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "e"), get.cell.meta.data("cell.end.degree", sector.index = "f"), get.cell.meta.data("cell.top.radius", track.index = 2), get.cell.meta.data("cell.bottom.radius", track.index = 3), col = "#0000FF40") pos = circlize(c(0.2, 0.8), c(0.2, 0.8), sector.index = "h", track.index = 2) draw.sector(pos[1, "theta"], pos[2, "theta"], pos[1, "rou"], pos[2, "rou"], clock.wise = TRUE, col = "#00FFFF40") circos.clear()
Convert fontsize to cex
fontsize(x)
fontsize(x)
x |
value for fontsize |
# There is no example NULL
# There is no example NULL
Generate random genomic data
generateRandomBed( nr = 10000, nc = 1, fun = function(k) rnorm(k, 0, 0.5), species = NULL)
generateRandomBed( nr = 10000, nc = 1, fun = function(k) rnorm(k, 0, 0.5), species = NULL)
nr |
Number of rows |
nc |
Number of numeric columns / value columns |
fun |
Function for generating random values |
species |
species, pass to |
The function will uniformly sample positions from the genome. Chromosome names start with "chr"
and positions are sorted. The final number of rows may not be exactly as same as nr
.
# There is no example NULL
# There is no example NULL
Calculate genomic region density
genomicDensity( region, window.size = 1e7, n.window = NULL, overlap = TRUE, count_by = c("percent", "number"), chr.len = NULL)
genomicDensity( region, window.size = 1e7, n.window = NULL, overlap = TRUE, count_by = c("percent", "number"), chr.len = NULL)
region |
Genomic positions. It can be a data frame with two columns which are start positions and end positions on a single chromosome. It can also be a bed-format data frame which contains the chromosome column. |
window.size |
Window size to calculate genomic density |
n.window |
number of windows, if it is specified, |
overlap |
Whether two neighbouring windows have half overlap |
count_by |
How to count the value for each window, |
chr.len |
the chromosome length. The value should be named vector |
It calculate the percent of each genomic windows that is covered by the input regions.
If the input is a two-column data frame, the function returns a data frame with three columns:
start position, end position and the overlapping (value depends on the count_by
argument). And if the input is a bed-format
data frame, there will be an additionally chromosome name column.
bed = generateRandomBed() bed = subset(bed, chr == "chr1") head(genomicDensity(bed)) head(genomicDensity(bed, count_by = "number"))
bed = generateRandomBed() bed = subset(bed, chr == "chr1") head(genomicDensity(bed)) head(genomicDensity(bed, count_by = "number"))
Get the inside radius of the most inner track
get_most_inside_radius()
get_most_inside_radius()
# There is no example NULL
# There is no example NULL
Get index for all sectors
get.all.sector.index()
get.all.sector.index()
It simply returns a vector of all sector index.
# There is no example NULL
# There is no example NULL
Get index for all tracks
get.all.track.index()
get.all.track.index()
It simply returns a vector of all track index.
# There is no example NULL
# There is no example NULL
Get the meta data of a cell
get.cell.meta.data(name, sector.index = get.current.sector.index(), track.index = get.current.track.index())
get.cell.meta.data(name, sector.index = get.current.sector.index(), track.index = get.current.track.index())
name |
Only support one name at a time, see "details" section |
sector.index |
Index of the sector |
track.index |
Index of the track |
The following meta information for a cell can be obtained:
sector.index
The name (index) for the sector
sector.numeric.index
Numeric index for the sector
track.index
Numeric index for the track
xlim
Minimal and maximal values on the x-axis
ylim
Minimal and maximal values on the y-axis
xrange
Range of xlim
. It equals to xlim[2] - xlim[1]
yrange
Range of ylim
xcenter
Center of x-axis. It equals to (xlim[2] + xlim[1])/2
ycenter
Center of y-axis
cell.xlim
Minimal and maximal values on the x-axis extended by cell paddings
cell.ylim
Minimal and maximal values on the y-axis extended by cell paddings
xplot
Degrees for right and left borders of the cell. The values ignore the direction of the circular layout (i.e. whether it is clock wise or not).
yplot
Radius for top and bottom borders of the cell.
cell.width
Width of the cell, in degrees.
cell.height
Height of the cell, simply yplot[2] - yplot[1]
cell.start.degree
Same as xplot[1]
cell.end.degree
Same as xplot[2]
cell.bottom.radius
Same as yplot[1]
cell.top.radius
Same as yplot[2]
track.margin
Margin for the cell
cell.padding
Padding for the cell
The function is useful when using panel.fun
in circos.track
to
get detailed information of the current cell.
CELL_META
is a short version of get.cell.meta.data
.
sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) { print(get.cell.meta.data("xlim")) }) print(get.cell.meta.data("xlim", sector.index = "a", track.index = 1)) circos.clear()
sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) { print(get.cell.meta.data("xlim")) }) print(get.cell.meta.data("xlim", sector.index = "a", track.index = 1)) circos.clear()
Get current chromosome name
get.current.chromosome()
get.current.chromosome()
The function is same as get.current.sector.index
and
should only be put inside panel.fun
when using circos.genomicTrackPlotRegion
.
# There is no example NULL
# There is no example NULL
Get current sector index
get.current.sector.index()
get.current.sector.index()
Simply returns the name of current sector
# There is no example NULL
# There is no example NULL
Get current track index
get.current.track.index()
get.current.track.index()
Simply returns the numeric index for the current track.
# There is no example NULL
# There is no example NULL
panel.fun
is using
Which data that panel.fun
is using
getI(...)
getI(...)
... |
Invisible arguments that users do not need to care |
The function should only be put inside panel.fun
when using circos.genomicTrackPlotRegion
.
If stack
is set to TRUE
in circos.genomicTrackPlotRegion
, the returned value
indicates which stack the function will be applied to.
If data
is a list of data frames, the value
indicates which data frame is being used. Please see the vignette to get a more clear explanation.
# There is no example NULL
# There is no example NULL
Highlight chromosomes
highlight.chromosome(...)
highlight.chromosome(...)
... |
pass to |
This is only a shortcut function of highlight.sector
.
# There is no example NULL
# There is no example NULL
Highlight sectors and tracks
highlight.sector( sector.index, track.index = get.all.track.index(), col = "#FF000040", border = NA, lwd = par("lwd"), lty = par("lty"), padding = c(0, 0, 0, 0), text = NULL, text.col = par("col"), text.vjust = 0.5, ...)
highlight.sector( sector.index, track.index = get.all.track.index(), col = "#FF000040", border = NA, lwd = par("lwd"), lty = par("lty"), padding = c(0, 0, 0, 0), text = NULL, text.col = par("col"), text.vjust = 0.5, ...)
sector.index |
A vector of sector index |
track.index |
A vector of track index that you want to highlight |
col |
Color for highlighting. Note the color should be semi-transparent. |
border |
Border of the highlighted region |
lwd |
Width of borders |
lty |
Style of borders |
padding |
Padding for the highlighted region. It should contain four values representing ratios of the width or height of the highlighted region |
text |
text added in the highlight region, only support plotting one string at a time |
text.vjust |
adjustment on 'vertical' (radical) direction. Besides to set it as numeric values, the value can also be a string contain absoute unit, e.g. "2.1mm", "-1 inche", but only "mm", "cm", "inches"/"inche" are allowed. |
text.col |
color for the text |
... |
pass to |
You can use circos.info
to find out index for all sectors and all tracks.
The function calls draw.sector
.
https://jokergoo.github.io/circlize_book/book/graphics.html#highlight-sectors-and-tracks
sectors = letters[1:8] circos.initialize(sectors, xlim = c(0, 1)) for(i in 1:4) { circos.trackPlotRegion(ylim = c(0, 1)) } circos.info(plot = TRUE) highlight.sector(c("a", "h"), track.index = 1) highlight.sector("c", col = "#00FF0040") highlight.sector("d", col = NA, border = "red", lwd = 2) highlight.sector("e", col = "#0000FF40", track.index = c(2, 3)) highlight.sector(c("f", "g"), col = NA, border = "green", lwd = 2, track.index = c(2, 3)) highlight.sector(sectors, col = "#FFFF0040", track.index = 4) circos.clear()
sectors = letters[1:8] circos.initialize(sectors, xlim = c(0, 1)) for(i in 1:4) { circos.trackPlotRegion(ylim = c(0, 1)) } circos.info(plot = TRUE) highlight.sector(c("a", "h"), track.index = 1) highlight.sector("c", col = "#00FF0040") highlight.sector("d", col = NA, border = "red", lwd = 2) highlight.sector("e", col = "#0000FF40", track.index = c(2, 3)) highlight.sector(c("f", "g"), col = NA, border = "green", lwd = 2, track.index = c(2, 3)) highlight.sector(sectors, col = "#FFFF0040", track.index = 4) circos.clear()
Convert units
inch_h(...)
inch_h(...)
... |
pass to |
This function is the same as inches_h
.
# There is no example NULL
# There is no example NULL
Convert unit on x direction in data coordinate
inch_x(...)
inch_x(...)
... |
pass to |
This function is the same as inches_x
.
# There is no example NULL
# There is no example NULL
Convert unit on y direction in data coordinate
inch_y(...)
inch_y(...)
... |
pass to |
This function is the same as inches_y
.
# There is no example NULL
# There is no example NULL
Convert units
inches_h(h)
inches_h(h)
h |
The height in numeric. |
See explanations in convert_length
page.
Zuguang Gu <[email protected]>
# see examples in `convert_length` page NULL
# see examples in `convert_length` page NULL
Convert unit on x direction in data coordinate
inches_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
inches_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
x |
The x-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
... |
Pass to |
See explanations in convert_x
page.
Zuguang Gu <[email protected]>
# see examples in `convert_x` page NULL
# see examples in `convert_x` page NULL
Convert unit on y direction in data coordinate
inches_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
inches_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
y |
The y-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
See explanations in convert_y
page.
Zuguang Gu <[email protected]>
# see examples in `convert_y` page NULL
# see examples in `convert_y` page NULL
Convert units
mm_h(h)
mm_h(h)
h |
The height in numeric. |
See explanations in convert_length
page.
Zuguang Gu <[email protected]>
# see examples in `convert_length` page NULL
# see examples in `convert_length` page NULL
Convert unit on x direction in data coordinate
mm_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
mm_x(x, sector.index = get.current.sector.index(), track.index = get.current.track.index(), ...)
x |
The x-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
... |
Pass to |
See explanations in convert_x
page.
Zuguang Gu <[email protected]>
# see examples in `convert_x` page NULL
# see examples in `convert_x` page NULL
Convert unit on y direction in data coordinate
mm_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
mm_y(y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
y |
The y-value in numeric. |
sector.index |
Index of sector. |
track.index |
Index of track. |
See explanations in convert_y
page.
Zuguang Gu <[email protected]>
# see examples in `convert_y` page NULL
# see examples in `convert_y` page NULL
Names of all meta data in the current cell
## S3 method for class 'CELL_META' names(x)
## S3 method for class 'CELL_META' names(x)
x |
use |
names(CELL_META)
names(CELL_META)
Genomic position transformation function
posTransform.default(region, ...)
posTransform.default(region, ...)
region |
Genomic positions at a single chromosome. It is a data frame with two columns which are start position and end position. |
... |
other arguments |
The default position transformation functions transforms position to be equally distributed along the chromosome. If users want to define their own transformation function, the requirement is that the returned value should be a data frame with two columns: transformed start position and transformed end position. The returned value should have same number of rows as the input one.
For details why need to use position transformation, please refer to circos.genomicPosTransformLines
.
# There is no example NULL
# There is no example NULL
Genomic position transformation function specifically for text
posTransform.text( region, y, labels, cex = 1, font = par("font"), sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), padding = 0, extend = 0, ...)
posTransform.text( region, y, labels, cex = 1, font = par("font"), sector.index = get.cell.meta.data("sector.index"), track.index = get.cell.meta.data("track.index"), padding = 0, extend = 0, ...)
region |
Genomic positions at a single chromosome. It is a data frame with two columns which are start position and end position. |
y |
positions of texts |
labels |
text labels |
cex |
text size |
font |
text font style |
sector.index |
sector index |
track.index |
track index |
padding |
padding of text |
extend |
extend to allow labels to be put in an region which is wider than the current chromosome. The value should be a proportion value and the length is either one or two. |
... |
other arguments |
This position transformation function is designed specifically for text. Under the transformation, texts will be as close as possible to the original positions.
# There is no example NULL
# There is no example NULL
Print CELL_META
## S3 method for class 'CELL_META' print(x, ...)
## S3 method for class 'CELL_META' print(x, ...)
x |
input |
... |
additional parameters |
# There is no example NULL
# There is no example NULL
Calculate inter-distance of genomic regions
rainfallTransform( region, mode = c("min", "max", "mean", "left", "right"), normalize_to_width = FALSE)
rainfallTransform( region, mode = c("min", "max", "mean", "left", "right"), normalize_to_width = FALSE)
region |
Genomic positions. It can be a data frame with two columns which are start positions and end positions on a single chromosome. It can also be a bed-format data frame which contains the chromosome column. |
mode |
How to calculate inter-distance. For a region, there is a distance to the
prevous region and also there is a distance to the next region. |
normalize_to_width |
If it is |
If the input is a two-column data frame, the function returnes a data frame with three columns: start position, end position and distance. And if the input is a bed-format data frame, there will be the chromosome column added.
The row order of the returned data frame is as same as the input one.
bed = generateRandomBed() bed = subset(bed, chr == "chr1") head(rainfallTransform(bed))
bed = generateRandomBed() bed = subset(bed, chr == "chr1") head(rainfallTransform(bed))
Generate random colors
rand_color(n, hue = NULL, luminosity = "random", transparency = 0, friendly = FALSE)
rand_color(n, hue = NULL, luminosity = "random", transparency = 0, friendly = FALSE)
n |
number of colors |
hue |
the hue of the generated color. You can use following default color name: |
luminosity |
controls the luminosity of the generated color. The value should be a string containing |
transparency |
transparency, numeric value between 0 and 1. |
friendly |
If it is true, light random colors will not be generated. |
The code is adapted from randomColor.js (https://github.com/davidmerfield/randomColor ).
Zuguang Gu <[email protected]>
plot(NULL, xlim = c(1, 10), ylim = c(1, 8), axes = FALSE, ann = FALSE) points(1:10, rep(1, 10), pch = 16, cex = 5, col = rand_color(10)) points(1:10, rep(2, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "bright")) points(1:10, rep(3, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "light")) points(1:10, rep(4, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "dark")) points(1:10, rep(5, 10), pch = 16, cex = 5, col = rand_color(10, hue = "red", luminosity = "bright")) points(1:10, rep(6, 10), pch = 16, cex = 5, col = rand_color(10, hue = "green", luminosity = "bright")) points(1:10, rep(7, 10), pch = 16, cex = 5, col = rand_color(10, hue = "blue", luminosity = "bright")) points(1:10, rep(8, 10), pch = 16, cex = 5, col = rand_color(10, hue = "monochrome", luminosity = "bright"))
plot(NULL, xlim = c(1, 10), ylim = c(1, 8), axes = FALSE, ann = FALSE) points(1:10, rep(1, 10), pch = 16, cex = 5, col = rand_color(10)) points(1:10, rep(2, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "bright")) points(1:10, rep(3, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "light")) points(1:10, rep(4, 10), pch = 16, cex = 5, col = rand_color(10, luminosity = "dark")) points(1:10, rep(5, 10), pch = 16, cex = 5, col = rand_color(10, hue = "red", luminosity = "bright")) points(1:10, rep(6, 10), pch = 16, cex = 5, col = rand_color(10, hue = "green", luminosity = "bright")) points(1:10, rep(7, 10), pch = 16, cex = 5, col = rand_color(10, hue = "blue", luminosity = "bright")) points(1:10, rep(8, 10), pch = 16, cex = 5, col = rand_color(10, hue = "monochrome", luminosity = "bright"))
Read/parse chromInfo data from a data frame/file/UCSC database
read.chromInfo( chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt"), species = NULL, chromosome.index = usable_chromosomes(species), sort.chr = TRUE)
read.chromInfo( chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt"), species = NULL, chromosome.index = usable_chromosomes(species), sort.chr = TRUE)
chromInfo |
Path of the chromInfo file or a data frame that already contains chromInfo data |
species |
Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this
value is specified, the function will download |
chromosome.index |
subset of chromosomes, also used to reorder chromosomes. |
sort.chr |
Whether chromosome names should be sorted (first sort by numbers then by letters).
If |
The function read the chromInfo data, sort the chromosome names and calculate the length of each chromosome. By default, it is human hg19 chromInfo data.
You can find the data structure for the chromInfo data from https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/chromInfo.txt.gz
df
Data frame for chromInfo data (rows are sorted if sort.chr
is set to TRUE
)
chromosome
Sorted chromosome names
chr.len
Length of chromosomes. Order are same as chromosome
data = read.chromInfo(species = "hg19") data = read.chromInfo(chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt")) chromInfo = read.table(system.file(package = "circlize", "extdata", "chromInfo.txt"), colClasses = c("character", "numeric"), sep = "\t") data = read.chromInfo(chromInfo = chromInfo)
data = read.chromInfo(species = "hg19") data = read.chromInfo(chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt")) chromInfo = read.table(system.file(package = "circlize", "extdata", "chromInfo.txt"), colClasses = c("character", "numeric"), sep = "\t") data = read.chromInfo(chromInfo = chromInfo)
Read/parse cytoband data from a data frame/file/UCSC database
read.cytoband( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, chromosome.index = usable_chromosomes(species), sort.chr = TRUE)
read.cytoband( cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL, chromosome.index = usable_chromosomes(species), sort.chr = TRUE)
cytoband |
Path of the cytoband file or a data frame that already contains cytoband data |
species |
Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this
value is specified, the function will download |
chromosome.index |
subset of chromosomes, also used to reorder chromosomes. |
sort.chr |
Whether chromosome names should be sorted (first sort by numbers then by letters).
If |
The function read the cytoband data, sort the chromosome names and calculate the length of each chromosome. By default, it is human hg19 cytoband data.
You can find the data structure of the cytoband data from https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz
df
Data frame for cytoband data (rows are sorted if sort.chr
is set to TRUE
)
chromosome
Sorted chromosome names
chr.len
Length of chromosomes. Orders are same as chromosome
data = read.cytoband(species = "hg19") data = read.cytoband(cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt")) cytoband = read.table(system.file(package = "circlize", "extdata", "cytoBand.txt"), colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") data = read.cytoband(cytoband = cytoband)
data = read.cytoband(species = "hg19") data = read.cytoband(cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt")) cytoband = read.table(system.file(package = "circlize", "extdata", "cytoBand.txt"), colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t") data = read.cytoband(cytoband = cytoband)
Convert to data coordinate system
reverse.circlize( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
reverse.circlize( x, y, sector.index = get.current.sector.index(), track.index = get.current.track.index())
x |
degree values. The value can also be a two-column matrix/data frame if you put x and y data points into one variable. |
y |
distance to the circle center (the radius) |
sector.index |
Index for the sector where the data coordinate is used |
track.index |
Index for the track where the data coordinate is used |
This is the reverse function of circlize
. It transform data points from polar coordinate system to a specified data coordinate system.
A matrix with two columns (x
and y
)
pdf(NULL) sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(0, 1)) reverse.circlize(c(30, 60), c(0.9, 0.8)) reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "d", track.index = 1) reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "a", track.index = 1) circos.clear() dev.off()
pdf(NULL) sectors = letters[1:4] circos.initialize(sectors, xlim = c(0, 1)) circos.trackPlotRegion(ylim = c(0, 1)) reverse.circlize(c(30, 60), c(0.9, 0.8)) reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "d", track.index = 1) reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "a", track.index = 1) circos.clear() dev.off()
Set gaps between tracks
set_track_gap(gap = 0.02)
set_track_gap(gap = 0.02)
gap |
Gap between two tracks. Use |
circos.initialize(letters[1:10], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) set_track_gap(mm_h(2)) circos.track(ylim = c(0, 1)) circos.clear()
circos.initialize(letters[1:10], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) set_track_gap(mm_h(2)) circos.track(ylim = c(0, 1)) circos.clear()
Set flag to current cell
set.current.cell(sector.index, track.index)
set.current.cell(sector.index, track.index)
sector.index |
sector index |
track.index |
track index |
After setting the current cell, all functions which need sector.index
and track.index
arguments and are applied to the current cell do not need to specify the two arguments explicitly.
pdf(NULL) circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) circos.info() set.current.cell("b", 1) circos.info() circos.clear() dev.off()
pdf(NULL) circos.initialize(letters[1:8], xlim = c(0, 1)) circos.track(ylim = c(0, 1)) circos.info() set.current.cell("b", 1) circos.info() circos.clear() dev.off()
Label the sector index and the track index on each cell
show.index()
show.index()
This function is deprecated, please use circos.info
instead.
# There is no example NULL
# There is no example NULL
Adjust positions of text
smartAlign(x1, x2, xlim)
smartAlign(x1, x2, xlim)
x1 |
Position which corresponds to the top of the text. |
x2 |
Position which corresponds to the bottom of the text. |
xlim |
Ranges on x-axis. |
used internally
# There is no example NULL
# There is no example NULL
Convert units
uh(...)
uh(...)
... |
pass to |
Please do not use this function. Use mm_h
/cm_h
/inches_h' instead.
# There is no example NULL
# There is no example NULL
Convert unit on x direction in data coordinate
ux(...)
ux(...)
... |
pass to |
Please do not use this function. Use mm_x
/cm_x
/inches_x' instead.
# There is no example NULL
# There is no example NULL
Convert unit on y direction in data coordinate
uy(...)
uy(...)
... |
pass to |
Please do not use this function. Use mm_y
/cm_y
/inches_y' instead.
# There is no example NULL
# There is no example NULL